The Significance of Selected Collagens and Their Connection with Relevant Extracellular Matrix Proteins in Bovine Early-Mid-Pregnancy and Parturition with and Without Retained Foetal Membranes
<p>COL1A1 Western blot analysis in the placenta (maternal and foetal parts) of cows during pregnancy and parturition (2nd, 4th, and 6th month pregnancy period, NR, foetal membranes released up to 8–12 h; R, foetal membranes not released up to 8–12 h, ST—mass standard). Βeta-actin was used as loading control. The picture represents one of membranes with 2 randomly selected samples from each examined group. Original images can be found in <a href="#app1-biomolecules-15-00167" class="html-app">supplementary materials Figure S2</a>.</p> "> Figure 2
<p>COL4A4 Western blot analysis in the placenta (maternal and foetal parts) of cows during pregnancy and parturition (2nd, 4th, and 6th month pregnancy period, NR, foetal membranes released up to 8–12 h; R, foetal membranes not released up to 8–12 h, ST—mass standard). Βeta-actin was used as loading control. The picture represents one of the membranes with 2 randomly selected samples from each examined group. Original images can be found in <a href="#app1-biomolecules-15-00167" class="html-app">supplementary materials Figure S3</a>.</p> "> Figure 3
<p>COL1A1 concentrations in the placentas (maternal and foetal parts) of cows during pregnancy (2nd, 4th and 6th month) and parturition (NR, foetal membranes released up to 8–12 h; R, foetal membranes not released up to 8–12 h). The horizontal line inside each box indicates the median. The box plot shades the lower and upper quartiles of the data. Whiskers represent the maximum and minimum values. The <span class="html-italic">p</span>-value from the Mann–Whitney U test, dependent variable: COL1A1 maternal and foetal, grouping variable: month; only statistically significant results were marked (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>COL4A4 concentrations in the placentas (maternal and foetal parts) of cows during pregnancy (2nd, 4th, and 6th month) and parturition (NR, foetal membranes released up to 8–12 h; R, foetal membranes not released up to 8–12 h). The horizontal line inside each box indicates the median. The box plot shades the lower and upper quartiles of the data. Whiskers represent the maximum and minimum values. The <span class="html-italic">p</span>-value from the Mann–Whitney U test, dependent variable: COL4A4 maternal and foetal, grouping variable: month; only statistically significant results were marked (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Placental Tissue Samples
2.2. Western Blot
2.3. Determinations of COL1 and COL4
2.4. Determination of Protein Content
2.5. Statistical Analysis
3. Results
3.1. Western Blot
3.2. ELISA Determination of COL1A1 and COL4A4 Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amin, Y.A.; Hussein, H.A. Latest Update on Predictive Indicators, Risk Factors and ‘Omic’ Technologies Research of Retained Placenta in Dairy Cattle—A Review. Reprod. Domest. Anim. 2022, 57, 687–700. [Google Scholar] [CrossRef]
- Peter, A.T. Bovine Placenta: A Review on Morphology, Components, and Defects from Terminology and Clinical Perspectives. Theriogenology 2013, 80, 693–705. [Google Scholar] [CrossRef]
- Jones, C.J.P.; Dantzer, V.; Leiser, R.; Krebs, C.; Stoddart, R.W. Localisation of Glycans in the Placenta: A Comparative Study of Epitheliochorial, Endotheliochorial, and Haemomonochorial Placentation. Microsc. Res. Technol. 1997, 38, 100–114. [Google Scholar] [CrossRef]
- Wooding, F.B.P. The Ruminant Placental Trophoblast Binucleate Cell: An Evolutionary Breakthrough. Biol. Reprod. 2022, 107, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Chavatte-Palmer, P.; Tarrade, A. Placentation in Different Mammalian Species. Ann. Endocrinol. 2016, 77, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Connor, B.B.O.; Pope, B.D.; Peters, M.M.; Ris-stalpers, C.; Parker, K.K. The Role of Extracellular Matrix in Normal and Pathological Pregnancy: Future Applications of Microphysiological Systems in Reproductive Medicine. Exp. Biol. Med. 2020, 245, 1163–1174. [Google Scholar] [CrossRef]
- Eiler, H.; Hopkins, F.M. Bovine Retained Placenta: Effects of Collagenase and Hyaluronidase on Detachment of Placenta. Biol. Reprod. 1992, 46, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Maj, J.G.; Kankofer, M. Activity of 72-KDa and 92-KDa Matrix Metalloproteinases in Placental Tissues of Cows with and without Retained Fetal Membranes. Placenta 1997, 18, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Dilly, M.; Hambruch, N.; Shenavai, S.; Schuler, G.; Froehlich, R.; Haeger, J.D.; Ozalp, G.R.; Pfarrer, C. Expression of Matrix Metalloproteinase (MMP)-2, MMP-14 and Tissue Inhibitor of Matrix Metalloproteinase (TIMP)-2 during Bovine Placentation and at Term with or without Placental Retention. Theriogenology 2011, 75, 1104–1114. [Google Scholar] [CrossRef]
- Sarges, J.; Heuwieser, W.; Schluns, J.; Drewes, B. Immunohistological Examination on the Distribution of Collagen Types I, III, IV and V in Bovine Post Partum Placentomes. J. Vet. Med. Ser. A 1998, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Meisser, A.; Bischof, P. Metalloproteinases and Human Placental Invasiveness. Placenta 2006, 27, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Isaka, K.; Isaka, K.; Usuda, S.; Usuda, S.; Ito, H.; Ito, H.; Sagawa, Y.; Sagawa, Y.; Nakamura, H.; Nakamura, H.; et al. Expression and Activity of Matrix Metalloproteinase 2 and 9 in Human Trophoblasts. Placenta 2003, 24, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Staun-Ram, E.; Goldman, S.; Gabarin, D.; Shalev, E. Expression and Importance of Matrix Metalloproteinase 2 and 9 (MMP-2 and -9) in Human Trophoblast Invasion. Reprod. Biol. Endocrinol. 2004, 2, 59. [Google Scholar] [CrossRef]
- Librach, C.L.; Werb, Z.; Fitzgerald, M.L.; Chiu, K.; Corwin, N.M.; Esteves, R.A.; Grobelny, D.; Galardy, R.; Damsky, C.H.; Fisher, S.J. 92-KD Type IV Collagenase Mediates Invasion of Human Cytotrophoblasts. J. Cell Biol. 1991, 113, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wang, Y.L.; Piao, Y.S.; Bai, S.X.; Xiao, Z.J.; Jia, Y.L.; Luo, S.Y.; Zhuang, L.Z. Effects of Matrix Proteins on the Expression of Matrix Metalloproteinase-2, -9, and -14 and Tissue Inhibitors of Metalloproteinases in Human Cytotrophoblast Cells during the First Trimester. Biol. Reprod. 2000, 62, 988–994. [Google Scholar] [CrossRef]
- Bischoff, H.A.; Stähelin, H.B.; Monsch, A.U.; Iversen, M.D.; Weyh, A.; von Dechend, M.; Akos, R.; Conzelmann, M.; Dick, W.; Theiler, R. Identifying a Cut-off Point for Normal Mobility: A Comparison of the Timed “up and Go” Test in Community-Dwelling and Institutionalised Elderly Women. Age Ageing 2003, 32, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Li, Q.; Li, S.; He, J.; Cao, W.; Lan, J.; Sun, B.; Zou, H.; Wang, C.; Liu, R.; et al. Membrane Type 1-Matrix Metalloproteinase Induces Epithelial-to-Mesenchymal Transition in Esophageal Squamous Cell Carcinoma: Observations from Clinical and in Vitro Analyses. Sci. Rep. 2016, 6, 22179. [Google Scholar] [CrossRef] [PubMed]
- Walter, I.; Boos, A. Matrix Metalloproteinases (MMP-2 and MMP-9) and Tissue Inhibitor-2 of Matrix Metalloproteinases (TIMP-2) in the Placenta and Interplacental Uterine Wall in Normal Cows and in Cattle with Retention of Fetal Membranes. Placenta 2001, 22, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Wawrzykowski, J.; Jamioł, M.; Kankofer, M. The Dependence between Glycodelin and Selected Metalloproteinases Concentrations in Bovine Placenta during Early Gestation and Parturition with and without Retained Foetal Membranes. Theriogenology 2024, 218, 231–238. [Google Scholar] [CrossRef]
- Franczyk, M.; Wawrzykowski, J.; Kankofer, M. Preliminary Results of the Placental Decorin Profile in Bovine Pregnancy and Parturition. Glycoconj. J. 2018, 35, 461–465. [Google Scholar] [CrossRef]
- Tomko, L.A.; Hill, R.C.; Barrett, A.; Szulczewski, J.M.; Conklin, M.W.; Eliceiri, K.W.; Keely, P.J.; Hansen, K.C.; Ponik, S.M. Targeted Matrisome Analysis Identifies Thrombospondin-2 and Tenascin-C in Aligned Collagen Stroma from Invasive Breast Carcinoma. Sci. Rep. 2018, 8, 12941. [Google Scholar] [CrossRef] [PubMed]
- Wawrzykowski, J.; Jamioł, M.; Kankofer, M. A Pilot Study on the Relationship between Thrombospondin-1 (THBS1) and Transforming Growth Factor Beta1 (TGFβ1) in the Bovine Placenta during Early Mid-Pregnancy as Well as Parturition with Normally Released and Retained Placenta. Mol. Reprod. Dev. 2024, 91, e23710. [Google Scholar] [CrossRef] [PubMed]
- Grunert, E. Aetiology, Pathogenesis and Treatment of Placental Retention in the Cow. Wien Tieraerztl. Mschr. 1983, 70, 230. [Google Scholar]
- Wawrzykowski, J.; Franczyk, M.; Ner-Kluza, J.; Silberring, J.; Kankofer, M. 2D Electrophoretic Pattern of Bovine Placental Proteins during Early-Mid Pregnancy. J. Mass Spectrom. 2020, 55, e4483. [Google Scholar] [CrossRef]
- Jamioł, M.; Wawrzykowski, J.; Bulak, K.; Kankofer, M. Effect of Decorin and Selected Glycosylation Inhibitors on the Adhesion of Caruncular Epithelial Cells of Pregnant Cows—Part I. Reprod. Domest. Anim. 2021, 56, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Jamioł, M.; Wawrzykowski, J.; Kankofer, M. The Influence of Progesterone and Prostaglandin F2α on Decorin and the Adhesion of Caruncular Epithelial Cells of Bovine Placenta at Early-Mid Pregnancy—Part II. Reprod. Domest. Anim. 2021, 56, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Wawrzykowski, J.; Jamioł, M.; Kankofer, M. The Role of Dermatopontin in Cell Adhesion in Bovine Placenta during Early-Mid Pregnancy and Parturition—Pilot Study. Theriogenology 2021, 171, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [PubMed]
- Leitinger, B.; Hohenester, E. Mammalian Collagen Receptors. Matrix Biol. 2007, 26, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Oefner, C.M.; Sharkey, A.; Gardner, L.; Critchley, H.; Oyen, M.; Moffett, A. Collagen Type IV at the Fetal-Maternal Interface. Placenta 2015, 36, 59–68. [Google Scholar] [CrossRef]
- Kaidi, R.; Brown, P.J.; David, J.S. Uterine Collagen during Pregnancy in Cattle. Vet. Res. 1995, 26, 87–91. [Google Scholar] [PubMed]
- Kaidi, R.; Brown, P.J.; David, J.S.E.; Etherington, D.J.; Robins, S.P. Uterine Collagen during Involution in Cattle. Matrix 1991, 11, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Regassa, F.; Noakes, D.E. Changes in the Weight, Collagen Concentration and Content of the Uterus and Cervix of the Ewe during Pregnancy. Res. Vet. Sci. 2001, 70, 61–66. [Google Scholar] [CrossRef]
- Shandley, L.; Moritz, K.M.; Samuel, C.S.; Wintour, E.M. Collagen in the Fetal Membranes of Sheep: Changes throughout Gestation and Effects of Dexamethasone at 60 Days. Reprod. Fertil. Dev. 1997, 9, 455–464. [Google Scholar] [CrossRef]
- Boos, A.; Stelljes, A.; Kohtes, J. Collagen Types I, III and IV in the Placentome and Interplacentomal Maternal and Fetal Tissues in Normal Cows and in Cattle with Retention of Fetal Membranes. Cells Tissues Organs 2003, 174, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Yamada, O.; Todoroki, J.I.; Takahashi, T.; Hashizume, K. The Dynamic Expression of Extracellular Matrix in the Bovine Endometrium at Implantation. J. Vet. Med. Sci. 2002, 64, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, K.L.; Eiler, H.; Hopkins, F.M. Changes in the Proportion of Type I and Type III Collagen in the Developing and Retained Bovine Placentome. Biol. Reprod. 1990, 43, 229–235. [Google Scholar] [CrossRef]
- Hoffmann, B.; Schuler, G. The Bovine Placenta; a Source and Target of Steroid Hormones: Observations during the Second Half of Gestation. Domest. Anim. Endocrinol. 2002, 23, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Guillomot, M.; Campion, E.; Prézelin, A.; Sandra, O.; Hue, I.; Le Bourhis, D.; Richard, C.; Biase, F.H.; Rabel, C.; Wallace, R.; et al. Spatial and Temporal Changes of Decorin, Type i Collagen and Fibronectin Expression in Normal and Clone Bovine Placenta. Placenta 2014, 35, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Haeger, J.D.; Hambruch, N.; Pfarrer, C. The Bovine Placenta in Vivo and in Vitro. Theriogenology 2016, 86, 306–312. [Google Scholar] [CrossRef]
- Dhital, B.; Gul-E-Noor, F.; Downing, K.T.; Hirsch, S.; Boutis, G.S. Pregnancy-Induced Dynamical and Structural Changes of Reproductive Tract Collagen. Biophys. J. 2016, 111, 57. [Google Scholar] [CrossRef] [PubMed]
- De Sa Peixoto, P.; Laurent, G.; Azaïs, T.; Mosser, G. Solid-State NMR Study Reveals Collagen I Structural Modifications of Amino Acid Side Chains upon Fibrillogenesis. J. Biol. Chem. 2013, 288, 7528–7535. [Google Scholar] [CrossRef] [PubMed]
- Konitsiotis, A.D.; Raynal, N.; Bihan, D.; Hohenester, E.; Farndale, R.W.; Leitinger, B. Characterization of High Affinity Binding Motifs for the Discoidin Domain Receptor DDR2 in Collagen. J. Biol. Chem. 2008, 283, 6861–6868. [Google Scholar] [CrossRef]
- Xu, H.; Raynal, N.; Stathopoulos, S.; Myllyharju, J.; Farndale, R.W.; Leitinger, B. Collagen Binding Specificity of the Discoidin Domain Receptors: Binding Sites on Collagens II and III and Molecular Determinants for Collagen IV Recognition by DDR1. Matrix Biol. 2011, 30, 16. [Google Scholar] [CrossRef]
- Galvin, N.J.; Vance, P.M.; Dixit, V.M.; Fink, B.; Frazier, W.A. Interaction of Human Thrombospondin with Types I-V Collagen: Direct Binding and Electron Microscopy. J. Cell Biol. 1987, 104, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Rosini, S.; Pugh, N.; Bonna, A.M.; Hulmes, D.J.S.; Farndale, R.W.; Adams, J.C. Thrombospondin-1 Promotes Matrix Homeostasis by Interacting with Collagen and Lysyl Oxidase Precursors and Collagen Cross-Linking Sites. Sci. Signal. 2018, 11, eaar2566. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, P.; Agah, A.; Kyriakides, T.R. The Role of Thrombospondins 1 and 2 in the Regulation of Cell-Matrix Interactions, Collagen Fibril Formation, and the Response to Injury. Int. J. Biochem. Cell Biol. 2004, 36, 1115–1125. [Google Scholar] [CrossRef]
- Weber, I.T.; Harrison, R.W.; Iozzo, R. V Model Structure of Decorin and Implications for Collagen Fibrillogenesis. J. Biol. Chem. 1996, 271, 31767–31771. [Google Scholar] [CrossRef]
- Rühland, C.; Schönherr, E.; Robenek, H.; Hansen, U.; Iozzo, R.V.; Bruckner, P.; Seidler, D.G. The Glycosaminoglycan Chain of Decorin Plays an Important Role in Collagen Fibril Formation at the Early Stages of Fibrillogenesis. FEBS J. 2007, 274, 4246–4255. [Google Scholar] [CrossRef]
- Gubbiotti, M.A.; Vallet, S.D.; Ricard-Blum, S.; Iozzo, R.V. Decorin Interacting Network: A Comprehensive Analysis of Decorin-Binding Partners and Their Versatile Functions. Matrix Biol. 2016, 55, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Reese, S.P.; Underwood, C.J.; Weiss, J.A. Effects of Decorin Proteoglycan on Fibrillogenesis, Ultrastructure, and Mechanics of Type I Collagen Gels. Matrix Biol. 2013, 32, 414–423. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawrzykowski, J.; Jamioł, M.; Kankofer, M. The Significance of Selected Collagens and Their Connection with Relevant Extracellular Matrix Proteins in Bovine Early-Mid-Pregnancy and Parturition with and Without Retained Foetal Membranes. Biomolecules 2025, 15, 167. https://doi.org/10.3390/biom15020167
Wawrzykowski J, Jamioł M, Kankofer M. The Significance of Selected Collagens and Their Connection with Relevant Extracellular Matrix Proteins in Bovine Early-Mid-Pregnancy and Parturition with and Without Retained Foetal Membranes. Biomolecules. 2025; 15(2):167. https://doi.org/10.3390/biom15020167
Chicago/Turabian StyleWawrzykowski, Jacek, Monika Jamioł, and Marta Kankofer. 2025. "The Significance of Selected Collagens and Their Connection with Relevant Extracellular Matrix Proteins in Bovine Early-Mid-Pregnancy and Parturition with and Without Retained Foetal Membranes" Biomolecules 15, no. 2: 167. https://doi.org/10.3390/biom15020167
APA StyleWawrzykowski, J., Jamioł, M., & Kankofer, M. (2025). The Significance of Selected Collagens and Their Connection with Relevant Extracellular Matrix Proteins in Bovine Early-Mid-Pregnancy and Parturition with and Without Retained Foetal Membranes. Biomolecules, 15(2), 167. https://doi.org/10.3390/biom15020167