IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury
<p>Changes in IL-18 expression following SCI. (<b>A</b>) IL-18 expression levels in the spinal cord 7 days after SCI. Relative IL-18 mRNA levels were quantified using real-time PCR and normalized to GAPDH. Data are presented as the mean ± SE from three independent experiments (<span class="html-italic">n</span> = 10). Results are shown as fold changes compared to sham mice. * <span class="html-italic">p</span> < 0.05; analysis of variance (ANOVA) with Welch’s <span class="html-italic">t</span>-test. (<b>B</b>) Distribution of IL-18 (green) in the spinal cord 3 days after SCI. (<b>C</b>) IL-18 signal intensity as shown in (<b>B</b>). DAPI (cyan) was used for nuclear staining. Scale bar, 50 μm. SCI: spinal cord injury; GAPDH: glyceraldehyde 3-phosphate.</p> "> Figure 2
<p>Inhibition of IL-18 improves recovery of motor function following SCI. (<b>A</b>) Experimental schedule. (<b>B</b>) BMS scores were significantly higher in IL-18 antibody-treated mice compared to control antibody-treated mice. (<b>C</b>) IL-18 antibody treatment reduced errors in the ladder walk test. (<b>D</b>) No significant difference was observed in the rotarod test. Results are presented as mean ± SE (<span class="html-italic">n</span> = 12 per group). * <span class="html-italic">p</span> < 0.05; two-way repeated-measures ANOVA with Sidak’s multiple comparisons test. SCI: spinal cord injury; BMS: Basso Mouse Scale; N.S.: not significant.</p> "> Figure 3
<p>Inhibition of IL-18 ameliorates the death of NeuN-positive neurons following SCI. (<b>A</b>) Representative images of immunohistochemical staining of neuronal cell death in the gray matter following SCI. Neurons were immunostained with an anti-NeuN antibody (red), and apoptotic cells were detected using an anti-cleaved caspase-3 (CC3) antibody (green). Scale bar: 50 μm. (<b>B</b>) Quantification of NeuN- and CC3-positive cells in the gray matter 2 mm rostral to the lesion epicenter, 7 days after SCI. Results are mean ± SE of five mice per group. * <span class="html-italic">p</span> < 0.05; ANOVA with Tukey’s multiple comparisons test. Scale bar: 50 μm. SCI: spinal cord injury; NeuN: neuronal nuclei; CC3: cleaved caspase-3.</p> "> Figure 4
<p>Treatment of IL-18 antibody alleviates reactive gliosis. (<b>A</b>) Representative images of GFAP-positive cells (red) labeled with immunofluorescence 3 days after SCI. (<b>B</b>) Quantification of GFAP immunoreactivity in a 200× magnification field. Results are mean ± SE of five mice per group. * <span class="html-italic">p</span> < 0.05; ANOVA with Tukey’s multiple comparisons test. Scale bar: 50 μm. SCI: spinal cord injury; GFAP: glial fibrillary acidic protein.</p> "> Figure 5
<p>Inhibition of IL-18 attenuates microglia/macrophage activation. (<b>A</b>) Representative images of Iba1-positive cells (red) labeled with immunofluorescence 3 days after SCI. (<b>B</b>) Quantification of Iba1-positive cells in a 200× magnification field. Results are mean ± SE of five mice per group. * <span class="html-italic">p</span> < 0.05; ANOVA with Tukey’s multiple comparisons test. Scale bar: 50 μm. SCI: spinal cord injury; Iba1: ionized calcium-binding adapter molecule 1.</p> "> Figure 6
<p>Inhibition of IL-18 attenuates the pro-inflammatory (M1) response and increases the anti-inflammatory (M2) response. (<b>A</b>) IL-18 antibody reduces pro-inflammatory cytokine levels and the M1 microglia/macrophage marker. Relative mRNA expression levels of IL-1β and Ccl17 in the spinal cord 3 days after SCI were measured by qPCR. (<b>B</b>) IL-18 antibody increases anti-inflammatory cytokine levels and the M2 microglia/macrophage marker. Relative mRNA expression levels of Arg1 in the spinal cord 3 days after SCI were measured by qPCR. All data are presented as mean ± SE, <span class="html-italic">n</span> = 4. * <span class="html-italic">p</span> < 0.05; ANOVA with Dunnett’s multiple comparisons tests. SCI: spinal cord injury; Arg1: arginase1; GAPDH: glyceraldehyde 3-phosphate.</p> "> Figure 7
<p>Cytokine/chemokine expression in the spinal cord of IL-18 antibody-treated mice. Pro-inflammatory cytokine levels, including TNF-α and CXCL1, showed a decreasing trend in IL-18 antibody-treated mice compared to control-treated mice.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Surgical Procedures for SCI and Anti-IL-18 Antibody Treatment
2.3. Behavioral Tests
2.3.1. BMS Score
2.3.2. Ladder Walk Test
2.3.3. Rotarod Test
2.4. Immunohistochemistry
2.5. Cytokine Array
2.6. RNA Extraction, Reverse Transcription, and Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Increased IL-18 Expression After SCI
3.2. IL-18 Inhibition-Enhanced Behavioral Recovery Following SCI
3.3. IL-18 Inhibition Attenuates Neuronal Loss After SCI
3.4. IL-18 Inhibition Attenuates Gliosis After SCI
3.5. IL-18 Inhibition Attenuates the Accumulation of Microglia/Macrophages After SCI
3.6. IL-18 Inhibition Reduces Pro-Inflammatory Cytokine Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartholdi, D.; Schwab, M.E. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: An in situ hybridization study. Eur. J. Neurosci. 1997, 9, 1422–1438. [Google Scholar] [CrossRef] [PubMed]
- Bethea, J.R. Spinal cord injury-induced inflammation: A dual-edged sword. Prog. Brain Res. 2000, 128, 33–42. [Google Scholar] [PubMed]
- Bethea, J.R.; Dietrich, W.D. Targeting the host inflammatory response in traumatic spinal cord injury. Curr. Opin. Neurol. 2002, 15, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Dusart, I.; Schwab, M.E. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur. J. Neurosci. 1994, 6, 712–724. [Google Scholar] [CrossRef]
- Norenberg, M.D.; Smith, J.; Marcillo, A. The pathology of human spinal cord injury: Defining the problems. J. Neurotrauma 2004, 21, 429–440. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.R.N.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [CrossRef]
- Kwon, B.K.; Tetzlaff, W.; Grauer, J.N.; Beiner, J.; Vaccaro, A.R. Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J. 2004, 4, 451–464. [Google Scholar] [CrossRef]
- Benveniste, E.N. Inflammatory cytokines within the central nervous system: Sources, function, and mechanism of action. Am. J. Physiol. 1992, 263 Pt 1, C1–C16. [Google Scholar] [CrossRef]
- Kuida, K.; Lippke, J.A.; Ku, G.; Harding, M.W.; Livingston, D.J.; Su, M.S.; Flavell, R.A. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 1995, 267, 2000–2003. [Google Scholar] [CrossRef]
- Popovich, P.G.; Guan, Z.; McGaughy, V.; Fisher, L.; Hickey, W.F.; Basso, D.M. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol. 2002, 61, 623–633. [Google Scholar] [CrossRef]
- Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev. 2018, 281, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Dinarello, C.A.; Molgora, M.; Garlanda, C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019, 50, 778–795. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K.; Yoshimoto, T.; Tsutsui, H.; Okamura, H. Interleukin-18 regulates both Th1 and Th2 responses. Annu. Rev. Immunol. 2001, 19, 423–474. [Google Scholar] [CrossRef] [PubMed]
- Alboni, S.; Cervia, D.; Sugama, S.; Conti, B. Interleukin 18 in the CNS. J. Neuroinflammation 2010, 7, 9. [Google Scholar] [CrossRef]
- Novick, D.; Kim, S.H.; Fantuzzi, G.; Reznikov, L.L.; Dinarello, C.A.; Rubinstein, M. Interleukin-18 binding protein: A novel modulator of the Th1 cytokine response. Immunity 1999, 10, 127–136. [Google Scholar] [CrossRef]
- Reznikov, L.L.; Kim, S.H.; Westcott, J.Y.; Frishman, J.; Fantuzzi, G.; Novick, D.; Rubinstein, M.; Dinarello, C.A. IL-18 binding protein increases spontaneous and IL-1-induced prostaglandin production via inhibition of IFN-gamma. Proc. Natl. Acad. Sci. USA 2000, 97, 2174–2179. [Google Scholar] [CrossRef]
- Uchida, Y.; Nariai, Y.; Obayashi, E.; Tajima, Y.; Koga, T.; Kawakami, A.; Urano, T.; Kamino, H. Generation of antagonistic monoclonal antibodies against the neoepitope of active mouse interleukin (IL)-18 cleaved by inflammatory caspases. Arch. Biochem. Biophys. 2022, 727, 109322. [Google Scholar] [CrossRef]
- Fusco, R.; Siracusa, R.; Genovese, T.; Cuzzocrea, S.; Di Paola, R. Focus on the Role of NLRP3 Inflammasome in Diseases. Int. J. Mol. Sci. 2020, 21, 4223. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; de Sa, K.S.G.; Ishimoto, A.Y.; Becerra, A.; Oliveira, S.; Almeida, L.; Goncalves, A.V.; Perucello, D.B.; Andrade, W.A.; Castro, R.; et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 2021, 218, e20201707. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef]
- Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in Health and Disease. Int. J. Mol. Sci. 2019, 20, 649. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, S.; Maeda, K.; Urano, T.; Mu, J.; Nakamura, M.; Yamamura, T.; Sawada, T.; Ishikawa, E.; Yamamoto, K.; Muto, H.; et al. Monoclonal Antibody Against Mature Interleukin-18 Ameliorates Colitis in Mice and Improves Epithelial Barrier Function. Inflamm. Bowel Dis. 2023, 30, 1353–1366. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Maeda, K.; Ohashi, A.; Urano, T.; Nariai, Y.; Kamino, H.; Nakamura, M.; Yamamura, T.; Sawada, T.; Ishikawa, E.; et al. Monoclonal Antibodies Against Mature Interleukin-18 Ameliorate Colitis and Repair Goblet Cell Function. Dig. Dis. Sci. 2024, 69, 2573–2585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fujita, Y.; Matsuzaki, R.; Yamashita, T. Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death Dis. 2018, 9, 460. [Google Scholar] [CrossRef]
- Sada, N.; Fujita, Y.; Mizuta, N.; Ueno, M.; Furukawa, T.; Yamashita, T. Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury. Cell Death Dis. 2020, 11, 655. [Google Scholar] [CrossRef]
- Basso, D.M.; Fisher, L.C.; Anderson, A.J.; Jakeman, L.B.; McTigue, D.M.; Popovich, P.G. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J. Neurotrauma 2006, 23, 635–659. [Google Scholar] [CrossRef]
- Metz, G.A.; Whishaw, I.Q. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: A new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J. Neurosci. Methods 2002, 115, 169–179. [Google Scholar] [CrossRef]
- Nakanishi, T.; Fujita, Y.; Yamashita, T. Neuropilin-1-mediated pruning of corticospinal tract fibers is required for motor recovery after spinal cord injury. Cell Death Dis. 2019, 10, 67. [Google Scholar] [CrossRef]
- Norimatsu, Y.; Ohmori, T.; Kimura, A.; Madoiwa, S.; Mimuro, J.; Seichi, A.; Yatomi, Y.; Hoshino, Y.; Sakata, Y. FTY720 improves functional recovery after spinal cord injury by primarily nonimmunomodulatory mechanisms. Am. J. Pathol. 2012, 180, 1625–1635. [Google Scholar] [CrossRef]
- Zou, Y.; Stagi, M.; Wang, X.; Yigitkanli, K.; Siegel, C.S.; Nakatsu, F.; Cafferty, W.B.; Strittmatter, S.M. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. J. Neurosci. 2015, 35, 10429–10439. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.; Zhang, Y.; Feng, S.Q.; Liu, Y.; Shields, L.B.E.; Zhao, Y.Z.; Zhu, Q.; Gozal, D.; Shields, C.B.; et al. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor. Mol. Neurobiol. 2016, 53, 3448–3461. [Google Scholar] [CrossRef] [PubMed]
- Rust, R.; Kaiser, J. Insights into the Dual Role of Inflammation after Spinal Cord Injury. J. Neurosci. 2017, 37, 4658–4660. [Google Scholar] [CrossRef] [PubMed]
- de Rivero Vaccari, J.P.; Lotocki, G.; Marcillo, A.E.; Dietrich, W.D.; Keane, R.W. A molecular platform in neurons regulates inflammation after spinal cord injury. J. Neurosci. 2008, 28, 3404–3414. [Google Scholar] [CrossRef]
- Fassbender, K.; Mielke, O.; Bertsch, T.; Muehlhauser, F.; Hennerici, M.; Kurimoto, M.; Rossol, S. Interferon-gamma-inducing factor (IL-18) and interferon-gamma in inflammatory CNS diseases. Neurology 1999, 53, 1104–1106. [Google Scholar] [CrossRef]
- Jander, S.; Stoll, G. Differential induction of interleukin-12, interleukin-18, and interleukin-1beta converting enzyme mRNA in experimental autoimmune encephalomyelitis of the Lewis rat. J. Neuroimmunol. 1998, 91, 93–99. [Google Scholar] [CrossRef]
- Losy, J.; Niezgoda, A. IL-18 in patients with multiple sclerosis. Acta Neurol. Scand. 2001, 104, 171–173. [Google Scholar] [CrossRef]
- Miyoshi, K.; Obata, K.; Kondo, T.; Okamura, H.; Noguchi, K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J. Neurosci. 2008, 28, 12775–12787. [Google Scholar] [CrossRef]
- Xie, W.R.; Deng, H.; Li, H.; Bowen, T.L.; Strong, J.A.; Zhang, J.M. Robust increase of cutaneous sensitivity, cytokine production and sympathetic sprouting in rats with localized inflammatory irritation of the spinal ganglia. Neuroscience 2006, 142, 809–822. [Google Scholar] [CrossRef]
- Hedtjarn, M.; Leverin, A.L.; Eriksson, K.; Blomgren, K.; Mallard, C.; Hagberg, H. Interleukin-18 involvement in hypoxic-ischemic brain injury. J. Neurosci. 2002, 22, 5910–5919. [Google Scholar] [CrossRef]
- Yatsiv, I.; Morganti-Kossmann, M.C.; Perez, D.; Dinarello, C.A.; Novick, D.; Rubinstein, M.; Otto, V.I.; Rancan, M.; Kossmann, T.; Redaelli, C.A.; et al. Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J. Cereb. Blood Flow Metab. 2002, 22, 971–978. [Google Scholar] [CrossRef]
- Choo, A.M.; Liu, J.; Dvorak, M.; Tetzlaff, W.; Oxland, T.R. Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp. Neurol. 2008, 212, 490–506. [Google Scholar] [CrossRef] [PubMed]
- Sugama, S.; Wirz, S.A.; Barr, A.M.; Conti, B.; Bartfai, T.; Shibasaki, T. Interleukin-18 null mice show diminished microglial activation and reduced dopaminergic neuron loss following acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. Neuroscience 2004, 128, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, M.; He, F.; Zhou, S.; Zhu, L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J. Neuroinflammation 2017, 14, 207. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begum, E.; Mahmod, M.R.; Rahman, M.M.; Fukuma, F.; Urano, T.; Fujita, Y. IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury. Biomolecules 2025, 15, 16. https://doi.org/10.3390/biom15010016
Begum E, Mahmod MR, Rahman MM, Fukuma F, Urano T, Fujita Y. IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury. Biomolecules. 2025; 15(1):16. https://doi.org/10.3390/biom15010016
Chicago/Turabian StyleBegum, Easmin, Md Rashel Mahmod, Md Mahbobur Rahman, Fumiko Fukuma, Takeshi Urano, and Yuki Fujita. 2025. "IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury" Biomolecules 15, no. 1: 16. https://doi.org/10.3390/biom15010016
APA StyleBegum, E., Mahmod, M. R., Rahman, M. M., Fukuma, F., Urano, T., & Fujita, Y. (2025). IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury. Biomolecules, 15(1), 16. https://doi.org/10.3390/biom15010016