Identifying Hub Genes and miRNAs Associated with Alzheimer’s Disease: A Bioinformatics Pathway to Novel Therapeutic Strategies
<p>Volcano plot of differentially expressed genes (DEG) of GSE138260 dataset (LOAD’s and healthy control samples). Red dots represent upregulated genes according to <span class="html-italic">p</span>-value < 0.05 and |logFC| > 0. Blue dots represent downregulated genes according to <span class="html-italic">p</span>-values < 0.05 and |logFC| < 0.</p> "> Figure 2
<p>Analysis of differentially expressed gene (DEG) networks. (<b>a</b>) MCODE-clustered subnetwork of upregulated DEGs. (<b>b</b>) MCODE-clustered subnetwork of downregulated DEGs.</p> "> Figure 3
<p>Enrichment analysis of MCODE-clustered subnetwork of upregulated DEGs by Metascape.</p> "> Figure 4
<p>Enrichment analysis of MCODE-clustered subnetwork of downregulated DEGs by Metascape.</p> "> Figure 5
<p>Hub genes identified by cytoHubba. (<b>a</b>) Hub genes of the PPI network of upregulated DEGs. (<b>b</b>) Hub genes of the PPI network of downregulated DEGs. The descending color from red to yellow represents decreasing interaction intensity between genes.</p> "> Figure 6
<p>High centrality filtered network of miRNAs predicted from hub genes (mRNA). The blue diamond represents the miRNAs, and the red circle represents the mRNA. The dashed lines represent the relationships between them.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Selection
2.2. Study of Differentially Expressed Genes (DEGs)
2.3. Functional and Enrichment Analysis of DEG Pathways
2.4. Constructing Networks of Protein–Protein Interactions (PPI) and Identifying Subnetworks
2.5. Analyzing Hub Genes and Protein–Protein Interaction Networks
2.6. Predicting Mirnas Through Hub Genes as Targets
3. Results
3.1. Study of Differentially Expressed Genes (DEGs)
3.2. Functional and Enrichment Analysis of DEG Pathways
3.3. Analyzing Protein–Protein Interaction Networks
3.4. Analyzing Hub Genes
3.5. Predicting Mirnas Through Hub Genes as Targets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, M.; Musgrave, I.F.; Lardelli, M. Alzheimer disease: Amyloidogenesis, the presenilins and animal models. Biochim. Biophys. Acta 2007, 1772, 285–297. [Google Scholar] [CrossRef]
- Ray, B.; Lahiri, D.K. Neuroinflammation in Alzheimer’s disease: Different molecular targets and potential therapeutic agents including curcumin. Curr. Opin. Pharmacol. 2009, 9, 434–444. [Google Scholar] [CrossRef]
- Li, Y.B.; Fu, Q.; Guo, M.; Du, Y.; Chen, Y.; Cheng, Y. MicroRNAs: Pioneering regulators in Alzheimer’s disease pathogenesis, diagnosis, and therapy. Transl. Psychiatry 2024, 14, 367. [Google Scholar] [CrossRef]
- Bertram, L.; Tanzi, R.E. The genetic epidemiology of neurodegenerative disease. J. Clin. Investig. 2005, 115, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jin, Y.; Cheng, X.; Song, Q.; Wang, Y.; He, L.; Chen, T. The relevance between abnormally elevated serum ceramide and cognitive impairment in Alzheimer’s disease model mice and its mechanism. Psychopharmacology 2024, 241, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Ganekal, P.; Vastrad, B.; Kavatagimath, S.; Vastrad, C.; Kotrashetti, S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. Medicina 2023, 59, 309. [Google Scholar] [CrossRef] [PubMed]
- Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet 2011, 377, 1019–1031. [Google Scholar] [CrossRef]
- Bhole, R.P.; Chikhale, R.V.; Rathi, K.M. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci. Rep. 2024, 16, 8–42. [Google Scholar] [CrossRef] [PubMed]
- Gascón, E.; Zaragoza, P.; Calvo, A.C.; Osta, R. Sporadic Amyotrophic Lateral Sclerosis Skeletal Muscle Transcriptome Analysis: A Comprehensive Examination of Differentially Expressed Genes. Biomolecules 2024, 14, 377. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, E.M.; Jhala, D.; More, C.B.; Patel, A.K.; Joshi, C. Bioinformatics analysis of miRNA and its associated genes to identify potential biomarkers of oral submucous fibrosis and oral malignancy. Cancer Rep. 2023, 6, e1787. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, Y.; Zha, Q.; Shi, J.; Weng, Q. Bioinformatics to analyze the differentially expressed genes in different degrees of Alzheimer’s disease and their roles in progress of the disease. J. Appl. Genet. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Johnson, E.C.B.; Dammer, E.B.; Duong, D.M.; Ping, L.; Zhou, M.; Yin, L.; Higginbotham, L.A.; Guajardo, A.; White, B.; Troncoso, J.C.; et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 2020, 26, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, A.; Arnold, C.; Ueberham, U.; Reiche, K.; Fallmann, J.; Hackermuller, J.; Horn, F.; Stadler, P.F.; Arendt, T. Alzheimer-related genes show accelerated evolution. Mol. Psychiatr. 2021, 26, 5790–5796. [Google Scholar] [CrossRef] [PubMed]
- Clough, E.; Barrett, T. The Gene Expression Omnibus Database. In Statistical Genomics: Methods and Protocols; Mathé, E., Davis, S., Eds.; Springer: New York, NY, USA, 2016; pp. 93–110. [Google Scholar]
- Braak, H.; Alafuzoff, I.; Arzberger, T.; Kretzschmar, H.; Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006, 112, 389–404. [Google Scholar] [CrossRef]
- Reimers, M.; Carey, V.J. Bioconductor: An open source framework for bioinformatics and computational biology. Methods Enzymol. 2006, 411, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.S.; Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 2010, 26, 2363–2367. [Google Scholar] [CrossRef]
- Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2 Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; 213p. [Google Scholar] [CrossRef]
- Cao, T.; Dong, J.; Huang, J.; Tang, Z.; Shen, H. Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer. Front. Oncol. 2022, 12, 979565. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Rosenstiel, P.C.; Schulenburg, H. ABSSeq: A new RNA-Seq analysis method based on modelling absolute expression differences. BMC Genom. 2016, 17, 541. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.C.; Wang, L.G.; Han, Y.Y.; He, Q.Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.A.-O.; Nastou, K.A.-O.; Mehryary, F.A.-O.; Hachilif, R.; Gable, A.L.; Fang, T.A.-O.; Doncheva, N.A.-O.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-H.; Chen, S.-H.; Wu, H.-H.; Ho, C.-W.; Ko, M.-T.; Lin, C.-Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11. [Google Scholar] [CrossRef] [PubMed]
- Ru, Y.; Kechris, K.J.; Tabakoff, B.; Hoffman, P.; Radcliffe, R.A.; Bowler, R.; Mahaffey, S.; Rossi, S.; Calin, G.A.; Bemis, L.; et al. The multiMiR R package and database: Integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 2014, 42, e133. [Google Scholar] [CrossRef]
- Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020, 48, W244–W251. [Google Scholar] [CrossRef]
- Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 2006, 1695, 1–9. [Google Scholar]
- Pedersen, T.L. ggraph: An Implementation of Grammar of Graphics for Graphs and Networks, R package version 2.2.1.9000. 2024. Available online: https://rdrr.io/cran/ggraph/ (accessed on 17 November 2024).
- Yu, Q.-S.; Feng, W.-Q.; Shi, L.-L.; Niu, R.-Z.; Liu, J. Integrated Analysis of Cortex Single-Cell Transcriptome and Serum Proteome Reveals the Novel Biomarkers in Alzheimer’s Disease. Brain Sci. 2022, 12, 1022. [Google Scholar] [CrossRef]
- He, S.; Jiang, W.; Jiang, B.; Yu, C.; Zhao, G.; Li, Y.; Qi, L.; Zhang, J.; Wang, D. Potential Roles of Nr4a3-Mediated Inflammation in Immunological and Neurological Diseases. Mol. Neurobiol. 2024, 61, 5958–5973. [Google Scholar] [CrossRef]
- Porosk, L.; Härk, H.H.; Bicev, R.N.; Gaidutšik, I.; Nebogatova, J.; Armolik, E.-J.; Arukuusk, P.; da Silva, E.R.; Langel, Ü. Aggregation Limiting Cell-Penetrating Peptides Derived from Protein Signal Sequences. Int. J. Mol. Sci. 2023, 24, 4277. [Google Scholar] [CrossRef]
- Mak, S.; Li, W.; Fu, H.; Luo, J.; Cui, W.; Hu, S.; Pang, Y.; Carlier, P.R.; Tsim, K.W.; Pi, R.; et al. Promising tacrine/huperzine A-based dimeric acetylcholinesterase inhibitors for neurodegenerative disorders: From relieving symptoms to modifying diseases through multitarget. J. Neurochem. 2021, 158, 1381–1393. [Google Scholar] [CrossRef]
- Jiang, H.; Qiu, J.; Deng, X.; Li, D.; Tao, T. Potential active compounds and common mechanisms of Evodia rutaecarpa for Alzheimer’s disease comorbid pain by network pharmacology analysis. Heliyon 2023, 9, e18455. [Google Scholar] [CrossRef]
- Dai, D.L.; Li, M.; Lee, E.B. Human Alzheimer’s disease reactive astrocytes exhibit a loss of homeostastic gene expression. Acta Neuropathol. Commun. 2023, 11, 127. [Google Scholar] [CrossRef]
- Jin, B.; Cheng, X.; Fei, G.; Sang, S.; Zhong, C. Identification of diagnostic biomarkers in Alzheimer’s disease by integrated bioinformatic analysis and machine learning strategies. Front. Aging Neurosci. 2023, 15, 1169620. [Google Scholar] [CrossRef]
- Li, S.-J.; Ma, M.-H.; Li, J.-M.; Lu, X.-Y.; Lu, C.-B.; Zhou, S.-F.; Zhang, L.-X.; Li, M.-Q.; Shao, T.-Z.; Bai, S.-P.; et al. CNTN1 Aggravates Neuroinflammation and Triggers Cognitive Deficits in Male Mice by Boosting Crosstalk between Microglia and Astrocytes. Aging Dis. 2023, 14, 1853–1869. [Google Scholar] [CrossRef]
- Collu, R.; Giunti, E.; Daley, S.; Chen, M.; Xia, W. Angiotensin-converting enzyme inhibitors and statins therapies-induced changes in omics profiles in humans and transgenic tau mice. Biomed. Pharmacother. 2023, 168, 115756. [Google Scholar] [CrossRef]
- Sebate, B.; Cuttler, K.; Cloete, R.; Britz, M.; Christoffels, A.; Williams, M.; Carr, J.; Bardien, S. Prioritization of candidate genes for a South African family with Parkinson’s disease using in-silico tools. PLoS ONE 2021, 16, e0249324. [Google Scholar] [CrossRef]
- Xue, Y.-Y.; Chen, Y.-H.; Lin, R.-R.; Huang, H.-F.; Wu, Z.-Y.; Tao, Q.-Q. Alzheimer’s disease susceptibility locus in CD2AP is associated with increased cerebrospinal fluid tau levels in mild cognitive impairment. Neurosci. Lett. 2022, 771, 136419. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.K.; Sanphui, P.; Das, A.K.; Banerji, B.; Biswas, S.C. Small-Molecule Cdc25A Inhibitors Protect Neuronal Cells from Death Evoked by NGF Deprivation and 6-Hydroxydopamine. ACS Chem. Neurosci. 2023, 14, 1226–1237. [Google Scholar] [CrossRef]
- Hwang, D.-J.; Choi, D.-H.; Kwon, K.-C.; Kim, E.-H.; Kim, T.-K.; Koo, J.-H.; Cho, J.-Y. Exercise Reverses Amyloid β-Peptide–Mediated Cognitive Deficits in Alzheimer’s Disease Mice Expressing Mutant Presenilin-2. Med. Sci. Sports Exerc. 2022, 54, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Gou, X.; Yu, L.; Zhang, Q.; Yang, P.; Pang, M.; Pang, X.; Pang, C.; Wei, Y.; Zhang, X. Exploring the interaction between T-cell antigen receptor-related genes and MAPT or ACHE using integrated bioinformatics analysis. Front. Neurol. 2023, 14, 1129470. [Google Scholar]
- Ye, X.-W.; Liu, M.-N.; Wang, X.; Cheng, S.-Q.; Li, C.-S.; Bai, Y.-Y.; Yang, L.-L.; Wang, X.-X.; Wen, J.; Xu, W.-J.; et al. Exploring the common pathogenesis of Alzheimer’s disease and type 2 diabetes mellitus via microarray data analysis. Front. Aging Neurosci. 2023, 15, 1071391. [Google Scholar] [CrossRef]
- Cristóvão, J.S.; Gomes, C.M. S100 Proteins in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Basavaraj, V.; Chanabasayya, V. Identification of Key Pathways and Genes in Dementia via Integrated Bioinformatics Analysis. bioRxiv 2021. [Google Scholar] [CrossRef]
- Wang, X.; Shi, N.; Wu, B.; Yuan, L.; Chen, J.; Ye, C.; Hao, M. Bioinformatics analysis of gene expression profile and functional analysis in periodontitis and Parkinson’s disease. Front. Aging Neurosci. 2022, 14, 1029637. [Google Scholar] [CrossRef]
- Nie, Z.; Pu, T.; Han, Z.; Wang, C.; Pan, C.; Li, P.; Ma, X.; Yao, Y.; Zhao, Y.; Wang, C.; et al. Extra Spindle Pole Bodies-Like 1 Serves as a Prognostic Biomarker and Promotes Lung Adenocarcinoma Metastasis. Front. Oncol. 2022, 12, 930647. [Google Scholar] [CrossRef]
- Liang, B.; Zhou, Y.; Jiao, J.; Xu, L.; Yan, Y.; Wu, Q.; Tong, X.; Yan, H. Integrated Analysis of Transcriptome Data Revealed AURKA and KIF20A as Critical Genes in Medulloblastoma Progression. Front. Oncol. 2022, 12, 875521. [Google Scholar] [CrossRef]
- Lee, D.Y.; Hah, J.H.; Jeong, W.J.; Chung, E.J.; Kwon, T.K.; Ahn, S.H.; Sung, M.W.; Kwon, S.K. The Expression of Defensin-Associated Genes May Be Correlated With Lymph Node Metastasis of Early-Stage Tongue Cancer. Clin. Exp. Otorhinolaryngol. 2022, 15, 372–379. [Google Scholar] [CrossRef]
- Xie, Y.; Li, H.; Zhong, B.; Zhu, X.; Ye, R.; Xie, B.; Zhang, J. SPRR3 Contributes to Aggressiveness of Pancreatic Cancer Cells via NF-κB Signaling Pathway. BioMed Res. Int. 2023, 2023, 7518744. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bao, Z.; Liang, D.; Li, M.; Wei, M.; Ge, X.; Liu, J.; Li, J. Plasma exosomal miR-106a-5p expression in myasthenia gravis. Muscle Nerve 2020, 61, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Bai, B.; Wang, X.; Li, Y.; Chen, P.-C.; Yu, K.; Dey, K.K.; Yarbro, J.M.; Han, X.; Lutz, B.M.; Rao, S.; et al. Deep Multilayer Brain Proteomics Identifies Molecular Networks in Alzheimer’s Disease Progression. Neuron 2020, 105, 975–991.e977. [Google Scholar] [CrossRef]
- Mantzavinos, V.; Alexiou, A. Biomarkers for Alzheimer’s Disease Diagnosis. Curr. Alzheimer Res. 2017, 14, 1149–1154. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, H.; Li, X. Unearthing of Key Genes Driving the Pathogenesis of Alzheimer’s Disease via Bioinformatics. Front. Genet. 2021, 12, 641100. [Google Scholar] [CrossRef]
- Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991, 30, 572–580. [Google Scholar] [CrossRef]
- Ceylan, H. Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer’s Disease: Insights from a Synaptic Machinery Perspective. J. Mol. Neurosci. 2022, 72, 273–286. [Google Scholar] [CrossRef]
- Pusswald, G.; Dapić, B.; Bum, C.; Schernhammer, E.; Stögmann, E.; Lehrner, J.A.-O. Olfactory identification, cognition, depressive symptoms, and 5-year mortality in patients with subjective cognitive decline, mild cognitive impairment, and Alzheimer’s disease. Wien. Med. Wochenschr. 2024, 174, 95–106. [Google Scholar] [CrossRef]
- Chang, M.; Kim, H.J.; Mook-Jung, I.; Oh, S.-h. Hearing loss as a risk factor for cognitive impairment and loss of synapses in the hippocampus. Behav. Brain Res. 2019, 372, 112069. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.Q.; Chen, Y.C.; Wu, Z.Y. The role of CD2AP in the Pathogenesis of Alzheimer’s Disease. Aging Dis. 2019, 10, 901–907. [Google Scholar] [CrossRef]
- Adachi, A.; Kano, F.; Saido, T.C.; Murata, M. Visual screening and analysis for kinase-regulated membrane trafficking pathways that are involved in extensive β-amyloid secretion. Genes Cells 2009, 14, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Ho, L.; Wang, J.; Peskind, E.; Pasinetti, G.M. S100A7, a Novel Alzheimer’s Disease Biomarker with Non-Amyloidogenic α-Secretase Activity Acts via Selective Promotion of ADAM-10. PLoS ONE 2009, 4, e4183. [Google Scholar] [CrossRef]
- Jiang, P.-P.; Peng, S.-S.; Pankratova, S.; Luo, P.; Zhou, P.; Chen, Y. Proteins Involved in Synaptic Plasticity Are Downregulated in the Cerebrospinal Fluid of Infants With Clinical Sepsis Complicated by Neuroinflammation. Front. Cell. Neurosci. 2022, 16, 887212. [Google Scholar] [CrossRef]
- Prajjwal, P.A.-O.; Kolanu, N.D.; Reddy, Y.B.; Ahmed, A.; Marsool, M.A.-O.; Santoshi, K.; Pattani, H.H.; John, J.; Chandrasekar, K.A.-O.; Hussin, O.A.-O.X. Association of Parkinson’s disease to Parkinson’s plus syndromes, Lewy body dementia, and Alzheimer’s dementia. Health Sci. Rep. 2024, 7, e2019. [Google Scholar] [CrossRef]
- Montarolo, F.; Perga, S.; Martire, S.; Navone, D.N.; Marchet, A.; Leotta, D.; Bertolotto, A. Altered NR4A Subfamily Gene Expression Level in Peripheral Blood of Parkinson’s and Alzheimer’s Disease Patients. Neurotox. Res. 2016, 30, 338–344. [Google Scholar] [CrossRef]
- Huang, L.; Zhong, X.; Qin, S.; Deng, M. Protocatechuic acid attenuates β-secretase activity and okadaic acid-induced autophagy via the Akt/GSK-3β/MEF2D pathway in PC12 cells. Mol. Med. Rep. 2020, 21, 1328–1335. [Google Scholar] [CrossRef]
- Lukey, M.J.; Greene, K.S.; Erickson, J.W.; Wilson, K.F.; Cerione, R.A. The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy. Nat. Commun. 2016, 7, 11321. [Google Scholar] [CrossRef]
- Koldamova, R.; Schug, J.; Lefterova, M.; Cronican, A.A.; Fitz, N.F.; Davenport, F.A.; Carter, A.; Castranio, E.L.; Lefterov, I. Genome-wide approaches reveal EGR1-controlled regulatory networks associated with neurodegeneration. Neurobiol. Dis. 2014, 63, 107–114. [Google Scholar] [CrossRef]
- Minta, K.; Brinkmalm, G.; Portelius, E.; Johansson, P.; Svensson, J.; Kettunen, P.; Wallin, A.; Zetterberg, H.; Blennow, K.; Andreasson, U. Brevican and Neurocan Peptides as Potential Cerebrospinal Fluid Biomarkers for Differentiation Between Vascular Dementia and Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 79, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Abyadeh, M.; Tofigh, N.; Hosseinian, S.; Hasan, M.; Amirkhani, A.; Fitzhenry, M.J.; Gupta, V.; Chitranshi, N.; Salekdeh, G.H.; Haynes, P.A.; et al. Key Genes and Biochemical Networks in Various Brain Regions Affected in Alzheimer’s Disease. Cells 2022, 11, 987. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.G.; Erdal, M.E.; Ozge, A.A.; Sungur, M.A. Can Peripheral MicroRNA Expression Data Serve as Epigenomic (Upstream) Biomarkers of Alzheimer’s Disease? OMICS 2016, 20, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Vu, G.H.; Nguyen, H.D. Molecular mechanisms of sulforaphane in Alzheimer’s disease: Insights from an in-silico study. In Silico Pharmacol. 2024, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.Y.; Chen, S.R.; Wang, Y.; Jiao, J.J.; Qiao, J.; Hölscher, C.; Wang, Z.J.; Zhang, S.X.; Wu, M.N. Integrated analysis of the lncRNA-associated ceRNA network in Alzheimer’s disease. Gene 2023, 876, 147484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, X.W.; Leung, G.H.D.; Ren, B.H.; Zhang, Q.; Xiong, Z.Q.; Zhou, J.Y.; Yang, L.; Lu, G.; Chan, W.Y.; et al. Circulating microRNAs as diagnostic biomarkers for ischemic stroke: Evidence from comprehensive analysis and real-world validation. Int. J. Med. Sci. 2023, 20, 1009–1023. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Kim, M.S. Exposure to a mixture of heavy metals induces cognitive impairment: Genes and microRNAs involved. Toxicology 2022, 471, 153164. [Google Scholar] [CrossRef] [PubMed]
- Sadlon, A.; Takousis, P.; Evangelou, E.; Prokopenko, I.; Alexopoulos, P.; Udeh-Momoh, C.M.; Price, G.; Middleton, L.; Perneczky, R. Association of Blood MicroRNA Expression and Polymorphisms with Cognitive and Biomarker Changes in Older Adults. J. Prev. Alzheimer’s Dis. 2024, 11, 230–240. [Google Scholar] [CrossRef]
- De Ferrari, G.V.; Avila, M.E.; Medina, M.A.; Perez-Palma, E.; Bustos, B.I.; Alarcon, M.A. Wnt/beta-catenin signaling in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2014, 13, 745–754. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, B.; Craig, D.; Bullock, R.; Passmore, P. Statins for the prevention of dementia. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Wang, L.; Zhen, H.; Sun, Y.; Rong, S.; Li, B.; Song, Z.; Liu, Z.; Li, Z.; Ding, J.; Yang, H.; et al. Plasma Exo-miRNAs Correlated with AD-Related Factors of Chinese Individuals Involved in Abeta Accumulation and Cognition Decline. Mol. Neurobiol. 2022, 59, 6790–6804. [Google Scholar] [CrossRef] [PubMed]
- Sala Frigerio, C.; Lau, P.; Salta, E.; Tournoy, J.; Bossers, K.; Vandenberghe, R.; Wallin, A.; Bjerke, M.; Zetterberg, H.; Blennow, K.; et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology 2013, 81, 2103–2106. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S.; Cai, D. Integrated miRNA-Seq and mRNA-Seq Study to Identify miRNAs Associated With Alzheimer’s Disease Using Post-mortem Brain Tissue Samples. Front. Neurosci. 2021, 15, 620899. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.; Kim, M.S. The role of mixed B vitamin intakes on cognitive performance: Modeling, genes and miRNAs involved. J. Psychiatr Res. 2022, 152, 38–56. [Google Scholar] [CrossRef]
- Samadian, M.; Gholipour, M.; Hajiesmaeili, M.; Taheri, M.; Ghafouri-Fard, S. The Eminent Role of microRNAs in the Pathogenesis of Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 641080. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gascón, E.; Calvo, A.C.; Molina, N.; Zaragoza, P.; Osta, R. Identifying Hub Genes and miRNAs Associated with Alzheimer’s Disease: A Bioinformatics Pathway to Novel Therapeutic Strategies. Biomolecules 2024, 14, 1641. https://doi.org/10.3390/biom14121641
Gascón E, Calvo AC, Molina N, Zaragoza P, Osta R. Identifying Hub Genes and miRNAs Associated with Alzheimer’s Disease: A Bioinformatics Pathway to Novel Therapeutic Strategies. Biomolecules. 2024; 14(12):1641. https://doi.org/10.3390/biom14121641
Chicago/Turabian StyleGascón, Elisa, Ana Cristina Calvo, Nora Molina, Pilar Zaragoza, and Rosario Osta. 2024. "Identifying Hub Genes and miRNAs Associated with Alzheimer’s Disease: A Bioinformatics Pathway to Novel Therapeutic Strategies" Biomolecules 14, no. 12: 1641. https://doi.org/10.3390/biom14121641
APA StyleGascón, E., Calvo, A. C., Molina, N., Zaragoza, P., & Osta, R. (2024). Identifying Hub Genes and miRNAs Associated with Alzheimer’s Disease: A Bioinformatics Pathway to Novel Therapeutic Strategies. Biomolecules, 14(12), 1641. https://doi.org/10.3390/biom14121641