A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling
<p>Biologic activity of phosphatidyl nucleoside conjugates in different human and murine cancer cell lines. General chemical structure of nucleoside phosphatidyl diglycerides, where R′ = H, and R″ = C3–C17 fatty acid residues; for diC6-THIOmolecule, R′ = H, R″ = C5 (<b>Aa</b>). Chemical structures of 6-thio-dG (<b>Ab</b>). Cell viability of human colorectal HT29 (<b>B</b>), human cervical HeLa (<b>C</b>), human NSCLC A549 (<b>D</b>), murine colorectal CT26 (<b>E</b>) cancer cell lines, and human dermal fibroblast HDFa cells (<b>F</b>) treated with the indicated concentrations of compounds for 4 days. Cell viability was measured using the MTT Assay. Samples were analyzed in triplicate, and EC<sub>50</sub> values were calculated using GraphPad Prism.</p> "> Figure 2
<p>diC6-THIOinduces more TIFs compared to 6-thio-dG. Representative 2D images of TIF and DNA damage foci for diC6-THIO and 6-thio-dG in HT29 and CT26 cells with 1 μM treatment for 4 days. Green: Telomeric probe, red: gammaH2AX, yellow: TIFs, and blue: DAPI (<b>A</b>). Merged images with arrows show the representative pictures of TIFs (<b>A</b>); the quantitative measurements of TIF volumes (<b>B</b>); and global DNA damage (<b>C</b>) of HT29, HeLa, and CT26 cells treated with diC6-THIO (1 μM) and 6-thio-dG (1 μM) for 4 days. Data are shown as means ± SEM from two to three independent experiments. <span class="html-italic">p</span>-value was determined by two-way ANOVA followed by a post hoc test (Tukey’s). All TIF and global DNA damage volumes were scored by DiAna plugin (n ≈ 50 for HT29, HeLa, and CT26 cells. <span class="html-italic">p</span>-values for TIF between control vs. 6-thio-dG (**** <span class="html-italic">p</span> < 0.0001) or control vs. diC6-THIO (**** <span class="html-italic">p</span> < 0.0001) or 6-thio-dG vs. diC6-THIO (* <span class="html-italic">p</span> = 0.0147) in HT29; control vs. 6-thio-dG (**** <span class="html-italic">p</span> < 0.0001) or control vs. diC6-THIO (**** <span class="html-italic">p</span> < 0.0001) or 6-thio-dG vs. diC6-THIO (<span class="html-italic">p</span> = 0.9966) in HeLa; and control vs. 6-thio-dG (**** <span class="html-italic">p</span> < 0.0001) or control vs. diC6-THIO (**** <span class="html-italic">p</span> < 0.0001) or 6-thio-dG vs. diC6-THIO (**** <span class="html-italic">p</span> < 0.0001) in CT26. ns, not significant. <span class="html-italic">p</span>-values for global DNA damage between control vs. 6-thio-dG (**** <span class="html-italic">p</span> < 0.0001) or control vs. diC6-THIO (*** <span class="html-italic">p</span> = 0.0001) or 6-thio-dG vs. diC6-THIO (<span class="html-italic">p</span> = 0.8267) in HT29; control vs. 6-thio-dG (*** <span class="html-italic">p</span> = 0.0004) or control vs. diC6-THIO (** <span class="html-italic">p</span> = 0.0014) or 6-thio-dG vs. diC6-THIO (<span class="html-italic">p</span> = 0.9314) in HeLa; and control vs. 6-thio-dG (** <span class="html-italic">p</span> = 0.0077) or control vs. diC6-THIO (*** <span class="html-italic">p</span> = 0.0003) or 6-thio-dG vs. diC6-THIO (<span class="html-italic">p</span> = 0.5879) in CT26. ns, not significant.</p> "> Figure 3
<p>diC6-THIO reduces tumor growth in xenograft and syngeneic mouse models. Xenograft model with HT29 cells. The mice were subjected to 3 mg/kg diC6-THIO treatment (total of 6 doses on days 0, 2, 4, 6, 8, and 10, with day 0 designated as the day of treatment start) and 6 mg/kg diC6-THIO treatment (total of 4 doses on days 0, 2, 4, and 6, with day 0 designated as the day of treatment start). Tumor volumes were scored by GraphPad Prism (n = 2 per each group for nude CD1 mice, 2 × 10<sup>6</sup> HT29 cells were injected). *** <span class="html-italic">p</span> = 0.0003 (control vs. 3 mg/kg diC6-THIO), **** <span class="html-italic">p</span> < 0.0001 (control vs. 6 mg/kg diC6-THIO), and *** <span class="html-italic">p</span> = 0.0008 (3 mg/kg diC6-THIO vs. 6 mg/kg) in two-way ANOVA, (control; untreated) (<b>A</b>). The BALB/c mice tumor volume measurements. 2 × 10<sup>6</sup> murine CT26 cells were injected. BALB/c mice bearing CT26 tumors were treated with diC6-THIO (3 mg/kg, days 0, 2, 7, and 9, with day 0 designated as the day of treatment start). Data are shown as means ± SEM from two independent experiments. <span class="html-italic">p</span>-value was determined by two-way ANOVA by using GraphPad Prism. (n = 10 per each group, **** <span class="html-italic">p</span> < 0.0001 control vs. diC6-THIO in two-way ANOVA, control; untreated) (<b>B</b>). Individual tumor growth of control and diC6-THIO treatment groups (<b>C</b>). Graph shows body weight changes of mice in percentage following diC6-THIO treatment. The weights were measured every 2 days (<b>D</b>).</p> "> Figure 4
<p>Therapeutic efficacy of diC6-THIO when sequentially combined with anti-PD-1 and anti-PD-L1 in MC38 and CT26 colon cancer models. Data are shown as means ± SEM. <span class="html-italic">p</span>-value was determined by two-way ANOVA by using GraphPad Prism. In MC38 mouse model treatment groups, the mice were administered with 6 mg/kg diC6-THIO (i.v.) or 6 mg/kg sdiC6-THIO (i.v.) on days 0, 1, 2, 7, 8, and 9 and/or 10 mg/kg anti-PD-1 (i.p.) on days 4 and 12 (n = 8 per group). There were statistically significant differences between control vs. diC6-THIO (**** <span class="html-italic">p</span> < 0.0001), control vs. diC6-THIO + anti-PD-1 (**** <span class="html-italic">p</span> < 0.0001), diC6-THIO + anti-PD-1 vs. anti-PD-1 (**** <span class="html-italic">p</span> < 0.0001), control vs. diC6-THIO + anti-PD-1 (**** <span class="html-italic">p</span> < 0.0001), anti-PD-1 vs. DIC6-THIO + anti-PD-1 (**** <span class="html-italic">p</span> < 0.0001), diC6-THIO vs. diC6-THIO + anti-PD-1 (**** <span class="html-italic">p</span> < 0.0001), sdiC6-THIO vs. sdiC6-THIO + anti-PD-1 (** <span class="html-italic">p</span> = 0.0013), and diC6-THIO vs. sdiC6-THIO (**** <span class="html-italic">p</span> < 0.0001). No significant differences (ns) were found between control vs. sdiC6-THIO (<span class="html-italic">p</span> = 0.9301), control vs. anti-PD-1 (<span class="html-italic">p</span> = 0.1357), control vs. sdiC6-THIO + anti-PD-1 (<span class="html-italic">p</span> = 0.0756), and anti-PD-1 vs. sdiC6-THIO + anti-PD-1 (<span class="html-italic">p</span> = 0.9995). For statistical calculations, the final measurements from the euthanized mice are included until the completion of each group, which is determined by the endpoint reached when all mice in that group die. When comparing two groups, the statistical calculations consider the endpoint of the earlier group as reference (<b>A</b>). The body weight changes in percentage from MC38 control, diC6-THIO, sdiC6-THIO, diC6-THIO+ anti-PD-1, sdiC6-THIO + anti-PD-1, and anti-PD-1 groups (<b>B</b>). Individual MC38 tumor growth curves from control and treatment groups (<b>C</b>). In the CT26 mouse model, the mice were administered with 3 mg/kg diC6-THIO (i.p.) on days 0, 2, 7, 9 and/or 10 mg/kg anti-PD-L1 (i.p.) on days 4, 11. there was statistically significant difference between control vs. diC6-THIO (**** <span class="html-italic">p</span> < 0.0001), control vs. diC6-THIO + anti-PD-L1 (**** <span class="html-italic">p</span> < 0.0001), diC6-THIO vs. anti-PD-L1 (*** <span class="html-italic">p</span> = 0.0009), and diC6-THIO + anti-PD-L1 vs. anti-PD-L1 (*** <span class="html-italic">p</span> = 0.0003). No significant differences were found between diC6-THIO vs. diC6-THIO + anti-PD-L1 (<span class="html-italic">p</span> = 0.3222) and control vs. anti-PD-L1 (<span class="html-italic">p</span> = 0.4222). For statistical purposes only, the final measurements from the euthanized mice were included up to the completion of each group, which occurred on day 19 (<b>D</b>). The body weight changes of mice in percentage from CT26 control, diC6-THIO, diC6-THIO + anti-PD-L1, and anti-PD-L1 groups (<b>E</b>). Individual CT26 tumor growth curves from control and treatment groups (<b>F</b>).</p> "> Figure 5
<p>Immunophenotyping of CT26 bearing mice after diC6-THIO treatment. Total leukocyte (<b>A</b>) subpopulations. Myeloid subpopulations (<b>B</b>–<b>D</b>), lymphocyte subpopulations (<b>E</b>–<b>I</b>), and cytotoxic T cells/T regulatory cells ratio (<b>J</b>) in tumor tissue (number of cells in tumor tissue(#)/mg). Data are shown as means ± SEM. <span class="html-italic">p</span>-values were determined by unpaired Student’s <span class="html-italic">t</span>-test by using GraphPad Prism. Despite the lack of statistical significance among the groups for CD8<sup>+</sup>, CD8<sup>+</sup> CD62L<sup>−</sup>, CD8<sup>+</sup> CD4<sup>+</sup> FoxP3<sup>+</sup>, and CD4<sup>+</sup> FoxP3<sup>+</sup> panels (<span class="html-italic">p</span> > 0.05), the trend for T helper and cytotoxic T cells were indicated that diC6-THIO has potential to induce activated T cell infiltration (<b>E</b>,<b>F</b>,<b>H</b>,<b>I</b>). Opposite, in the treatment group, T regulatory cell numbers decreased (<b>G</b>). Following diC6-THIO treatment cytotoxic T cells: T regulatory cells ratio increased (<b>J</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde Cornelis, J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers 2015, 1, 15065. [Google Scholar] [CrossRef]
- Johdi, N.A.; Sukor, N.F. Colorectal Cancer Immunotherapy: Options and Strategies. Front. Immunol. 2020, 11, 1624. [Google Scholar] [CrossRef]
- Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clin. Cancer Res. 2019, 25, 3753–3758. [Google Scholar] [CrossRef] [PubMed]
- Jacome, A.A.; Eng, C. Role of immune checkpoint inhibitors in the treatment of colorectal cancer: Focus on nivolumab. Expert Opin. Biol. Ther. 2019, 19, 1247–1263. [Google Scholar] [CrossRef]
- Li, J.; Xu, X. Immune Checkpoint Inhibitor-Based Combination Therapy for Colorectal Cancer: An Overview. Int. J. Gen. Med. 2023, 16, 1527–1540. [Google Scholar] [CrossRef]
- Giang, I.; Boland, E.L.; Poon, G.M.K. Prodrug applications for targeted cancer therapy. AAPS J. 2014, 16, 899–913. [Google Scholar] [CrossRef]
- Walther, R.; Rautio, J.; Zelikin, A.N. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv. Drug Deliv. Rev. 2017, 118, 65–77. [Google Scholar] [CrossRef]
- Fattahi, N.; Shahbazi, M.A.; Maleki, A.; Hamidi, M.; Ramazani, A.; Santos, H.A. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J. Control. Release 2020, 326, 556–598. [Google Scholar] [CrossRef]
- Dahan, A.; Markovic, M.; Aponick, A.; Zimmermann, E.M.; Ben-Shabat, S. The prospects of lipidic prodrugs: An old approach with an emerging future. Future Med. Chem. 2019, 11, 2563–2571. [Google Scholar] [CrossRef]
- Mura, S.; Bui, D.T.; Couvreur, P.; Nicolas, J. Lipid prodrug nanocarriers in cancer therapy. J. Control. Release 2015, 208, 25–41. [Google Scholar] [CrossRef]
- Sreekanth, V.; Bajaj, A. Recent Advances in Engineering of Lipid Drug Conjugates for Cancer Therapy. ACS Biomater. Sci. Eng. 2019, 5, 4148–4166. [Google Scholar] [CrossRef]
- Irby, D.; Du, C.; Li, F. Lipid-Drug Conjugate for Enhancing Drug Delivery. Mol. Pharm. 2017, 14, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yang, J.; Wang, T.; Gao, J.; Xu, D. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J. Nanobiotechnol. 2022, 20, 49. [Google Scholar] [CrossRef]
- Griffith, J.D.; Comeau, L.; Rosenfield, S.; Stansel, R.M.; Bianchi, A.; Moss, H.; De Lange, T. Mammalian telomeres end in a large duplex loop. Cell 1999, 97, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.H. Structure and function of telomeres. Nature 1991, 350, 569–573. [Google Scholar] [CrossRef]
- Shay, J.W.; Wright, W.E. Telomerase: A target for cancer therapeutics. Cancer Cell 2002, 2, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.W.; Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 1997, 33, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Mender, I.; Gryaznov, S.; Shay, J.W. A novel telomerase substrate precursor rapidly induces telomere dysfunction in telomerase positive cancer cells but not telomerase silent normal cells. Oncoscience 2015, 2, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Mender, I.; Gryaznov, S.; Dikmen, Z.G.; Wright, W.E.; Shay, J.W. Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2′-deoxyguanosine. Cancer Discov. 2015, 5, 82–95. [Google Scholar] [CrossRef]
- Gilles, J.F.; Dos Santos, M.; Boudier, T.; Bolte, S.; Heck, N. DiAna, an ImageJ tool for object-based 3D colocalization and distance analysis. Methods 2017, 115, 55–64. [Google Scholar] [CrossRef]
- Ludlow, A.T.; Ludlow, A.T.; Robin, J.D.; Sayed, M.; Litterst, C.M.; Shelton, D.N.; Shay, J.W.; Wright, W.E. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res. 2014, 42, e104. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Cheng, L.; Li, C.; Dai, L.; Zhang, H.; Yan, F.; Shi, H.; Dong, G.; Ning, Z.; et al. Enrichment and characterization of cancer stem-like cells in ultra-low concentration of serum and non-adhesive culture system. Am. J. Transl. Res. 2018, 10, 1552–1561. [Google Scholar]
- Zhong, Y.; Guan, K.; Guo, S.; Zhou, C.; Wang, D.; Ma, W.; Zhang, Y.; Li, C.; Zhang, S. Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Lett. 2010, 299, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Godoy, P.; Godoy, P.; Hewitt, N.J.; Albrecht, U.; Andersen, M.E.; Ansari, N.; Bhattacharya, S.; Bode, J.G.; Bolleyn, J.; Borner, C.; et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol. 2013, 87, 1315–1530. [Google Scholar]
- Boudreau, N.; Werb, Z.; Bissell, M.J. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl. Acad. Sci. USA 1996, 93, 3509–3513. [Google Scholar] [CrossRef]
- Mender, I.; Siteni, S.; Barron, S.; Flusche, A.M.; Kubota, N.; Yu, C.; Cornelius, C.; Tedone, E.; Maziveyi, M.; Grichuk, A.; et al. Activating an Adaptive Immune Response with a Telomerase-Mediated Telomere Targeting Therapeutic in Hepatocellular Carcinoma. Mol. Cancer Ther. 2023, 22, 737–750. [Google Scholar] [CrossRef]
- Zhong, W.; Myers, J.S.; Wang, F.; Wang, K.; Lucas, J.; Rosfjord, E.; Lucas, J.; Hooper, A.T.; Yang, S.; Lemon, L.A.; et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genom. 2020, 21, 2. [Google Scholar] [CrossRef]
- Carretta, M.; Thorseth, M.L.; Schina, A.; Agardy, D.A.; Johansen, A.Z.; Baker, K.J.; Khan, S.; Rømer, A.M.A.; Fjæstad, K.Y.; Linder, H.; et al. Dissecting tumor microenvironment heterogeneity in syngeneic mouse models: Insights on cancer-associated fibroblast phenotypes shaped by infiltrating T cells. Front. Immunol. 2024, 14, 1320614. [Google Scholar] [CrossRef]
- Delahousse, J.; Skarbek, C.; Paci, A. Prodrugs as drug delivery system in oncology. Cancer Chemother. Pharmacol. 2019, 84, 937–958. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Wang, Y.; Chen, Y.; Jin, Q.; Ji, J. Doxorubicin conjugated phospholipid prodrugs as smart nanomedicine platforms for cancer therapy. J. Mater. Chem. B 2015, 3, 3297–3305. [Google Scholar] [CrossRef]
- Bui, D.T.; Nicolas, J.; Maksimenko, A.; Desmaële, D.; Couvreur, P. Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy. Chem. Commun. 2014, 50, 5336–53388. [Google Scholar] [CrossRef]
- Emamzadeh, M.; Desmaële, D.; Couvreur, P.; Pasparakis, G. Dual controlled delivery of squalenoyl-gemcitabine and paclitaxel using thermo-responsive polymeric micelles for pancreatic cancer. J. Mater. Chem. B 2018, 6, 2230–2239. [Google Scholar] [CrossRef] [PubMed]
- Mougin, J.; Yesylevskyy, S.O.; Bourgaux, C.; Chapron, D.; Michel, J.P.; Dosio, F.; Stella, B.; Ramseyer, C.; Couvreur, P. Stacking as a Key Property for Creating Nanoparticles with Tunable Shape: The Case of Squalenoyl-Doxorubicin. ACS Nano 2019, 13, 12870–12879. [Google Scholar] [CrossRef] [PubMed]
- Gobeaux, F.; Bizeau, J.; Samson, F.; Marichal, L.; Grillo, I.; Wien, F.; Yesylevsky, S.O.; Ramseyer, C.; Rouquette, M.; Lepetre-Mouelhi, S.; et al. Albumin-driven disassembly of lipidic nanoparticles: The specific case of the squalene-adenosine nanodrug. Nanoscale 2020, 12, 2793–2809. [Google Scholar] [CrossRef]
- Sauraj; Kumar, V.; Kumar, B.; Deeba, F.; Bano, S.; Kulshreshtha, A.; Gopinath, P.; Negi, Y.S. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy. Int. J. Biol. Macromol. 2019, 128, 204–213. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, F.; Chen, X.; Wan, J.; Wang, Y.; Li, T.; Wang, H. Self-Assembled Gemcitabine Prodrug Nanoparticles Show Enhanced Efficacy against Patient-Derived Pancreatic Ductal Adenocarcinoma. ACS Appl. Mater. Interfaces 2020, 12, 3327–3340. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lau, A.; Morris, T.J.; Guo, L.; Fordyce, C.B.; Stanley, E.F. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: Analysis by quantitative immunocolocalization. J. Neurosci. 2004, 24, 4070–4081. [Google Scholar] [CrossRef] [PubMed]
- Manders, E.M.; Stap, J.; Brakenhoff, G.J.; Driel, R.V.; Aten, J.A. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J. Cell Sci. 1992, 103 Pt 3, 857–862. [Google Scholar] [CrossRef]
- Lachmanovich, E.; Shvartsman, D.E.; Malka, Y.; Botvin, C.; Henis, Y.I.; Weiss, A.M. Colocalization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: Application to immunofluorescence co-patching studies. J. Microsc. 2003, 212 Pt 2, 122–131. [Google Scholar] [CrossRef]
- Obara, B.; Jabeen, A.; Fernandez, N.; Laissue, P.P. A novel method for quantified, superresolved, three-dimensional colocalisation of isotropic, fluorescent particles. Histochem. Cell. Biol. 2013, 139, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Bolte, S.; Cordelieres, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224 Pt 3, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Jaskolski, F.; Mulle, C.; Manzoni, O.J. An automated method to quantify and visualize colocalized fluorescent signals. J. Neurosci. Methods 2005, 146, 42–49. [Google Scholar] [CrossRef] [PubMed]
EC50 (µM) | ||||||||
---|---|---|---|---|---|---|---|---|
Compounds | HT29 | HeLa | A549 | CT26 | MC38 | LLC | HDFa | U87 |
6-thio-dG | 0.2 | 0.1214 | 3.036 | 0.4071 | 1.507 | 0.172 | >100 | 0.8985 |
L1 | 0.4956 | 0.1955 | 7.326 | 2 | - | - | - | - |
L2 | 0.4818 | 0.2895 | 2.1 | 1.807 | - | - | - | - |
L3 | 0.5956 | 1.01 | 7.085 | 4.022 | - | - | - | - |
L4 | 0.3526 | 0.186 | 1.82 | 1.688 | - | - | - | - |
L5 | 0.2584 | 0.1886 | 3.402 | 1.277 | - | - | - | - |
L6 (diC6-THIO) | 0.076 | 0.1537 | 1.063 | 0.3418 | 3.527 | 0.3418 | >100 | 0.7878 |
sdiC6-THIO | - | - | - | - | >50 | 23.94 | - | - |
L7 | 0.2628 | 0.1537 | 1.383 | 0.344 | - | - | - | - |
L8 | 0.2 | 0.175 | 1.145 | 0.3592 | - | - | - | - |
L10 | 12.35 | - | - | 43.07 | - | - | - | - |
L11 | 0.4222 | 0.458 | 10.77 | 4.02 | - | - | - | - |
Control | diC6-THIO | |
---|---|---|
CD45+ in total cells | 6.3 ± 0.2 | 5.6 ± 0.1 |
CD11b+F4/80+ in CD45+ | 69.4 ± 1.9 | 70.9 ± 2.4 |
CD11b+Gr1dim in CD45+ | 8.4 ± 1.3 | 10.2 ± 0.3 |
CD11b+Gr1high in CD45+ | 16.9 ± 2 | 10.3 ± 2.6 |
CD4+ in CD45+ | 3.4 ± 0.7 | 6 ± 1.6 |
CD4+CD62L− in CD3+ | 77.9 ± 7.8 | 77 ± 0.2 |
CD4+FoxP3+ in CD3+ | 6.2 ± 2.7 | 0.5 ± 0.1 |
CD8+ in CD45+ | 21.5 ± 3.1 | 26.5 ± 1.9 |
CD8+CD62L− in CD3+ | 58.5 ± 16.8 | 31.9 ± 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmaz, M.; Goksen, S.; Mender, I.; Esendagli, G.; Erdener, S.E.; Ahmed, A.; Tenekeci, A.K.; Birichevskaya, L.L.; Gryaznov, S.M.; Shay, J.W.; et al. A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling. Biomolecules 2024, 14, 1616. https://doi.org/10.3390/biom14121616
Yilmaz M, Goksen S, Mender I, Esendagli G, Erdener SE, Ahmed A, Tenekeci AK, Birichevskaya LL, Gryaznov SM, Shay JW, et al. A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling. Biomolecules. 2024; 14(12):1616. https://doi.org/10.3390/biom14121616
Chicago/Turabian StyleYilmaz, Merve, Sibel Goksen, Ilgen Mender, Gunes Esendagli, Sefik Evren Erdener, Alessandra Ahmed, Ates Kutay Tenekeci, Larisa L. Birichevskaya, Sergei M. Gryaznov, Jerry W. Shay, and et al. 2024. "A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling" Biomolecules 14, no. 12: 1616. https://doi.org/10.3390/biom14121616
APA StyleYilmaz, M., Goksen, S., Mender, I., Esendagli, G., Erdener, S. E., Ahmed, A., Tenekeci, A. K., Birichevskaya, L. L., Gryaznov, S. M., Shay, J. W., & Dikmen, Z. G. (2024). A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling. Biomolecules, 14(12), 1616. https://doi.org/10.3390/biom14121616