Eggshell Quality Traits and Transcriptome Gene Screening Between Yunnong and Jingfen Chicken Breeds
<p>Cross-section microstructure of the YN chicken eggshell (<b>A</b>) and the JF chicken eggshell (<b>B</b>) at 500×. The larger area arrow represents the effective layer thickness, while the smaller one is the mastoid layer thickness.</p> "> Figure 2
<p>Microstructure of eggshell mammillary layer of the mastoid process of the YN chicken eggshell (<b>A</b>) and the JF chicken eggshell (<b>B</b>) at 500×.</p> "> Figure 3
<p>FPKM data expression density plot (<b>a</b>), density plot (<b>b</b>), and PCA cluster analysis plot (<b>c</b>) of kidney (JF_S, and YN_S) and eggshell gland (JF_ZG and YN_ZG) tissues of Yunnong and Jingfen chickens.</p> "> Figure 4
<p>Volcano plot of differentially expressed genes of Yunnong and Jingfen chicken breeds in kidney (JF–S and YN–S) and eggshell gland (JF–ZG and YN–ZG) tissues.</p> "> Figure 5
<p>Cluster map of differentially expressed genes between Yunnong and Jingfen chicken breeds in kidney (JF–S and YN–S) and eggshell gland (JF–ZG and YN–ZG) tissues.</p> "> Figure 6
<p>GO enrichment analysis between the YN–ZG_JF–ZG group (<b>a</b>) and the YN–S_JF–S group (<b>b</b>).</p> "> Figure 7
<p>Comparison between RT-qPCR and RNA-seq results for the eggshell glands (<b>A</b>) and kidney (<b>B</b>) tissues of the Yunnong and Jingfen chicken breeds.</p> ">
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Feeding Management
2.2. Sample Collection
2.3. Egg Quality Analysis
2.4. Microstructure Analysis
2.5. Total RNA Extraction, Purification, RNA-Seq, and Annotation
2.6. Validation of RNA-Seq Results via RT-qPCR
2.7. Bioinformatics and Statistical Analysis
3. Results
3.1. Egg and Eggshell Quality
3.2. Correlation Between Egg Quality and Eggshell Parameters
3.3. Microstructure of Eggshell
3.4. Transcriptome Analysis
3.5. RNA-Seq Differential Expression Profiling
3.6. Gene Enrichment Analysis
3.7. Validation of DEGs by RT-qPCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD-FAO Agricultural Outlook. OECD-FAO Agricultural Outlook 2023–2032; OECD: Paris, France, 2023. [Google Scholar]
- Li, L.; Miao, L.; Zhu, M.; Wang, L.; Zou, X. Dietary addition of zinc-methionine influenced eggshell quality by affecting calcium deposition in eggshell formation of laying hens. Br. J. Nutr. 2019, 122, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Tuiskula-Haavisto, M.; Honkatukia, M.; Dunn, I.C.; Bain, M.M.; De Koning, D.J.; Preisinger, R.; Schmutz, M.; Arango, J.; Fischer, D.; Vilkki, J. Validated quantitative trait loci for eggshell quality in experimental and commercial laying hens. Anim. Genet. 2018, 49, 329–333. [Google Scholar] [CrossRef]
- Liao, B.; Qiao, H.; Zhao, X.; Bao, M.; Liu, L.; Zheng, C.; Li, C.; Ning, Z. Influence of eggshell ultrastructural organization on hatchability. Poult. Sci. 2013, 92, 2236–2239. [Google Scholar] [CrossRef] [PubMed]
- Nys, Y.; Gautron, J.; Garcia-Ruiz, J.M.; Hincke, M.T. Avian eggshell mineralization: Biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol 2004, 3, 549–562. [Google Scholar] [CrossRef]
- Sauter, E.; Petersen, C. The Effect of Egg Shell Quality on Penetration by Various Salmonellae. Poult. Sci. 1974, 53, 2159–2162. [Google Scholar] [CrossRef] [PubMed]
- Samiullah; Roberts, J.R.; Chousalkar, K.K. Effect of production system and flock age on egg quality and total bacterial load in commercial laying hens. J. Appl. Poult. Res. 2014, 23, 59–70. [Google Scholar] [CrossRef]
- Hunton, P. Research on eggshell structure and quality: An historical overview. Braz. J. Poult. Sci. 2005, 7, 67–71. [Google Scholar] [CrossRef]
- Roberts, J.R. Factors Affecting Egg Internal Quality and Egg Shell Quality in Laying Hens. J. Poult. Sci. 2004, 41, 161–177. [Google Scholar] [CrossRef]
- Krawczyk, J.; Lewko, L.; Świątkiewicz, S. Effect of feeding selected strains of conserved breed hens with diets containing legumes on egg quality and content and activity of lysozyme. Ann. Anim. Sci. 2023, 24, 201–209. [Google Scholar] [CrossRef]
- Kowalska, E.; Kucharska-Gaca, J.; Kuźniacka, J.; Lewko, L.; Gornowicz, E.; Biesek, J.; Adamski, M. Egg quality depending on the diet with different sources of protein and age of the hens. Sci. Rep. 2021, 11, 2638. [Google Scholar] [CrossRef] [PubMed]
- International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Deng, Y.; Ma, H.; Hou, J.; Zhou, Z. Effect of transient receptor potential vanilloid 6 gene silencing on the expression of calcium transport genes in chicken osteoblasts. Poult. Sci. 2015, 94, 395–401. [Google Scholar] [CrossRef]
- Zhu, M.; Li, H.; Miao, L.; Li, L.; Dong, X.; Zou, X. Dietary cadmium chloride impairs shell biomineralization by disrupting the metabolism of the eggshell gland in laying hens. J. Anim. Sci. 2020, 98, skaa025. [Google Scholar] [CrossRef] [PubMed]
- Rowe, P.S.N. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem. Funct. 2012, 30, 355–375. [Google Scholar] [CrossRef]
- Bardet, C.; Vincent, C.; Lajarille, M.C.; Jaffredo, T.; Sire, J.Y. OC-116, the chicken ortholog of mammalian MEPE found in eggshell, is also expressed in bone cells. J. Exp. Zool. Part B Mol. Dev. Evol. 2010, 314, 653–662. [Google Scholar] [CrossRef]
- Nys, Y. Laying hen nutrition: Optimising hen performance and health, bone and eggshell quality. In Achieving Sustainable Production of Eggs; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; Volume 2, pp. 47–74. [Google Scholar]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; Tiwari, R.; Yatoo, M.I.; Karthik, K.; Michalak, I.; Dhama, K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health–a comprehensive review. Vet. Q. 2021, 41, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Krawczyk, J.; Puchała, M.; Józefiak, D. Dietary factors improving eggshell quality: An updated review with special emphasis on microelements and feed additives. World’s Poult. Sci. J. 2015, 71, 83–94. [Google Scholar] [CrossRef]
- Xuan, L.; Shi, X.; Xu, G.; Zheng, J. Research Note: Three-dimensional microstructural basis for chicken eggshell translucency. Poult. Sci. 2023, 102, 103149. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Mu, R.; Gegen, T.; Luo, J.; Xiao, Y.; Ou, S.; Wu, Q.; Zuo, Y.; Chen, Z.; Li, F. Comparative analysis of hepatic transcriptomes and metabolomes of Changshun green-shell laying hens based on different green eggshell color intensities. Poult. Sci. 2023, 103, 103220. [Google Scholar] [CrossRef]
- Fathi, M.M.; El-Dlebshany, A.E.; El-Deen, M.B.; Radwan, L.M.; Rayan, G.N. Effect of long-term selection for egg production on eggshell quality of Japanese quail (Coturnix japonica). Poult. Sci. 2016, 95, 2570–2575. [Google Scholar] [CrossRef]
- Bain, M. Recent advances in the assessment of eggshell quality and their future application. World’s Poult. Sci. J. 2005, 61, 268–277. [Google Scholar] [CrossRef]
- Alfonso-Carrillo, C.; Benavides-Reyes, C.; Mozos, J.d.L.; Dominguez-Gasca, N.; Sanchez-Rodríguez, E.; Garcia-Ruiz, A.I.; Rodriguez-Navarro, A.B. Relationship between Bone Quality, Egg Production and Eggshell Quality in Laying Hens at the End of an Extended Production Cycle (105 Weeks). Animals 2021, 11, 623. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.-W.; Qi, G.-H.; Cui, C.-F.; Wu, S.-G.; Zhang, H.-J.; Xu, L. Effects of dietary Bacillus subtilis supplementation and calcium levels on performance and eggshell quality of laying hens in the late phase of production. Poult. Sci. 2020, 100, 100970. [Google Scholar] [CrossRef] [PubMed]
- Orłowski, G.; Hałupka, L.; Pokorny, P.; Klimczuk, E.; Sztwiertnia, H.; Dobicki, W. The effect of embryonic development on metal and calcium content in eggs and eggshells in a small passerine. Ibis 2015, 158, 144–154. [Google Scholar] [CrossRef]
- Cader, S.; Goburdhun, D.; Neetoo, H. Assessment of the microbial safety and quality of eggs from small and large-scale hen breeders. J. World’s Poult. Res. 2014, 4, 75–81. [Google Scholar]
- BUNK, M.J.; Balloun, S. Ultrastructure of the mammillary region of low puncture strength avian eggshells. Poult. Sci. 1978, 57, 639–647. [Google Scholar] [CrossRef]
- Bain, M.M. Eggshell strength: A relationship between the mechanism of failure and the ultrastructural organisation of the mammillary layer. Br. Poult. Sci. 1992, 33, 303–319. [Google Scholar] [CrossRef]
- Yang, J.; Mao, Z.; Wang, X.; Zhuang, J.; Gong, S.; Gao, Z.; Xu, G.; Yang, N.; Sun, C. Identification of crucial genes and metabolites regulating the eggshell brownness in chicken. BMC Genom. 2022, 23, 761. [Google Scholar] [CrossRef]
- Tamura, T.; Fujii, S. Histological observations on the quail oviduct; on the secretions in the mucous epithelium of the uterus. J. Fac. Fish. Anim. Husb. Hiroshima Univ. 1966, 6, 357–371. [Google Scholar]
- Mabe, I.; Rapp, C.; Bain, M.; Nys, Y. Supplementation of a corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poult. Sci. 2003, 82, 1903–1913. [Google Scholar] [CrossRef]
- Leach, R.M., Jr.; Gross, J.R. The effect of manganese deficiency upon the ultrastructure of the eggshell. Poult. Sci. 1983, 62, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Bogdanski, F.A.; Silveira, R.M.F.; Rovadoscki, G.A.; Franzo, V.; Gervásio, I.C.; Escobar, D.Y.O.; Dauria, B.D.; Meira, A.N.; Mourão, L.M.B.; Coutinho, L.L.; et al. Genetic parameters for production, quality, and colors from eggs in Brazilian lineages of chickens. Trop. Anim. Health Prod. 2023, 55, 148. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ruan, Z.; Wu, Z.; Yu, Q.; Chen, F.; Zhang, X.; Zhang, F.; Linhardt, R.; Liu, Z. Geometrical characteristics of eggs from 3 poultry species. Poult. Sci. 2020, 100, 100965. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liao, B.; Zhang, Q.; Liu, J.; Duan, Z.; Hou, Z.; Ning, Z. Gene Polymorphisms are Associated with Eggshell Ultrastructure Organization in Hens. Braz. J. Poult. Sci. 2017, 19, 129–134. [Google Scholar] [CrossRef]
- Moreau, T.; Gautron, J.; Hincke, M.T.; Monget, P.; Réhault-Godbert, S.; Guyot, N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front. Immunol. 2022, 13, 946428. [Google Scholar] [CrossRef]
- Hincke, M.T.; Nys, Y.; Gautron, J.; Mann, K.; Rodriguez-Navarro, A.B.; McKee, M.D. The eggshell: Structure, composition and mineralization. Front. Biosci. 2012, 17, 1266–1280. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Cui, H.; Liu, R.; Zhao, G.; Wen, J. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genom. 2019, 20, 863. [Google Scholar] [CrossRef]
- Wada, Y.; Kikuchi, A.; Kaga, A.; Shimizu, N.; Ito, J.; Onuma, R.; Fujishima, F.; Totsune, E.; Sato, R.; Niihori, T.; et al. Metabolic and pathologic profiles of human LSS deficiency recapitulated in mice. PLoS Genet. 2020, 16, e1008628. [Google Scholar] [CrossRef] [PubMed]
- Resnyk, C.W.; Carré, W.; Wang, X.; Porter, T.E.; Simon, J.; Le Bihan-Duval, E.; Duclos, M.J.; Aggrey, S.E.; Cogburn, L.A. Transcriptional analysis of abdominal fat in genetically fat and lean chickens reveals adipokines, lipogenic genes and a link between hemostasis and leanness. BMC Genom. 2013, 14, 557. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Xin, Y.; Cui, X.; Cui, J.; Zhou, G. Suppression of NSDHL attenuates adipogenesis with a downregulation of LXR-SREBP1 pathway in 3T3-L1 cells. Biosci. Biotechnol. Biochem. 2020, 84, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, M.; Elgendy, R.; Giantin, M.; Martino, C.; Giansante, D.; Ianni, A.; Dacasto, M.; Martino, G. RNA sequencing-based whole-transcriptome analysis of friesian cattle fed with grape pomace-supplemented diet. Animals 2018, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wei, C.; Yi, L.; Yang, W.; Geng, Z.; Chen, X. Transcriptional insights into key genes and pathways underlying muscovy duck Subcutaneous Fat Deposition at different developmental stages. Animals 2021, 11, 2099. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Zhang, Z.; Tian, C.; Sheng, W.W.; Dong, Q.; Dong, M. Down-regulation of MSMO1 promotes the development and progression of pancreatic cancer. J. Cancer 2022, 13, 3013–3021. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, J.; Li, Y.; Ahmad, H.I.; Li, T.; Liang, Q.; Li, Y.; Yang, M.; Han, J. Liver Transcriptome Profiling Identifies Key Genes Related to Lipid Metabolism in Yili Geese. Animals 2023, 13, 3473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.M.; Deng, Y.; Lv, Q.; Xing, Q.; Pan, Y.; Liang, J.; Jiang, M.; Wei, Y.; Shi, D.; Xie, B.; et al. SQLE Promotes Differentiation and Apoptosis of Bovine Skeletal Muscle-Derived Mesenchymal Stem Cells. Cell Reprogram. 2020, 22, 22–29. [Google Scholar] [CrossRef]
- Zhang, D.D.; Wang, D.D.; Wang, Z.; Wang, Y.B.; Li, G.X.; Sun, G.R.; Tian, Y.D.; Han, R.L.; Li, Z.J.; Jiang, R.R.; et al. Estrogen abolishes the repression role of gga-miR-221-5p targeting ELOVL6 and SQLE to promote lipid synthesis in chicken liver. Int. J. Mol. Sci. 2020, 21, 1624. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, C.; Wang, X.; Zou, X.; Xiang, Z.; Wang, Z.; Gui, B.; Lin, T.; Hu, H. Identification of FDFT1 as a potential biomarker associated with ferroptosis in ccRCC. Cancer Med. 2022, 11, 3993–4004. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Shan, D.; Li, S.; Zhang, S.; Zi, X.; Xing, F.; Shi, J.; Liu, C.; Wang, T.; Sun, X.; et al. A Novel Ferroptosis Related Gene Signature for Prognosis Prediction in Patients with Colon Cancer. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
Components | Period I | Period II |
---|---|---|
Corn (%) | 63.25 | 67.22 |
Soybean meal (%) | 30.25 | 18.84 |
Wheat bran (%) | 0.00 | 10.00 |
Fishmeal (%) | 2.51 | 0.00 |
Coarse stone powder (%) | 0.39 | 0.46 |
Fine stone powder (%) | 0.70 | 0.62 |
Dicalcium phosphate (%) | 1.51 | 1.52 |
Methionine (%) | 0.08 | 0.07 |
Salt (%) | 0.35 | 0.31 |
1 Commercial premix (%) | 1.00 | 1.00 |
Chemical composition on a dry basis | ||
Dry matter (%) | 88.90 | 89.10 |
Crude protein (%) | 20.20 | 18.02 |
ME (Kcal/kg DM) | 3116.24 | 3020.12 |
Crude fiber (%) | 3.67 | 4.02 |
Ether extract (%) | 2.12 | 2.02 |
Ash (%) | 3.44 | 3.02 |
Calcium (%) | 0.74 | 0.97 |
Phosphorous (%) | 0.34 | 0.41 |
Vaccinations (Type) | Vaccination Age (Days) | Route |
---|---|---|
Malek’s vaccine | 1 | Subcutaneous (neck) |
Combined Newcastle disease and infectious bronchitis vaccine | 3 | Eyes |
Infectious bursal disease vaccine | 12 | Water |
Combined Newcastle disease and infectious bronchitis vaccine + reassortant avian influenza virus vaccine | 20 | Subcutaneous (neck) |
Infectious bursal disease vaccine | 25 | Water |
Avian pox vaccine | 35 | Wings |
Avian coryza trivalent vaccine | 42 | Muscle |
Reassortant avian influenza virus | 49 | Muscle |
Mycoplasma synovia vaccine | 56 | Muscle |
Gene | Primer Sequence | Annealing Temperature (°C) |
---|---|---|
GAPDH | Forward: TAGTGAAGGCTGCTGCTGAT | 60 |
Reverse: AAGGTGGAGGAATGGCTGTC | ||
LSS | Forward: AGCATTGGTCCGATTTCC | 60 |
Reverse: TCGTACCCTGCATCTTCAT | ||
NSDHL | Forward: ATGATGAACCAATCCCTT | 60 |
Reverse: TTAGCAGCCACAGCACTA | ||
MSMO1 | Forward: GAGGATGCCTGGCACTAT | 60 |
Reverse: CTCCAAGGATGAGCGTTT | ||
SQLE | Forward: AAGTTATTGTTGTGGGTTCA | 60 |
Reverse: AATCCTGTCAGGCTCCTT | ||
FDFT1 | Farward: AGAGGGGTGGTGAAGATTCG | 60 |
Reverse: TGGCACAGGACAGGTAGATG |
Item | Yunnong Chicken | Jingfen Chicken |
---|---|---|
LD 1 | 54.00 ± 2.00 A | 55.50 ± 1.67 B |
TD 2 | 40.85 ± 1.00 A | 42.24 ± 1.11 B |
EI 3 | 1.322 ± 0.050 | 1.315 ± 0.047 |
ESS 4 | 4.45 ± 0.16 A | 4.08 ± 0.06 B |
EST 5 | 0.429 ± 0.041 A | 0.362 ± 0.020 B |
EW 6 | 48.07 ± 8.09 A | 54.63 ± 3.66 B |
ProH 7 | 5.98 ± 1.06 | 5.69 ± 1.68 |
YC 8 | 14.30 ± 0.47 A | 10.64 ± 1.20 B |
HU 9 | 80.53 ± 10.40 | 75.12 ± 13.46 |
ESW 10 | 6.95 ± 0.45 A | 8.23 ± 0.96 B |
YW 11 | 17.32 ± 1.89 A | 13.12 ± 1.80 B |
LD 1 | TD 2 | EI 3 | ESS 4 | EST 5 | EW 6 | ProH 7 | YC 8 | HU 9 | ESW 10 | YW 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
LD 1 | 1.000 | ||||||||||
TD 2 | −0.101 | 1.000 | |||||||||
EI 3 | 0.043 | −0.052 | 1.000 | ||||||||
ESS 4 | 0.031 | 0.031 | 0.917 ** | 1.000 | |||||||
EST 5 | 0.062 | −0.008 | 0.928 ** | 0.864 ** | 1.000 | ||||||
EW 6 | 0.307 | −0.179 | −0.141 | −0.155 | −0.144 | 1.000 | |||||
ProH 7 | 0.071 | −0.027 | 0.977 ** | 0.951 ** | 0.946 ** | −0.152 | 1.000 | ||||
YC 8 | 0.109 | 0.473 ** | 0.009 | 0.129 | −0.012 | 0.143 | 0.066 | 1.000 | |||
HU 9 | 0.080 | −0.043 | 0.935 ** | 0.909 ** | 0.931 ** | −0.147 | 0.972 ** | 0.081 | 1.000 | ||
ESW 10 | 0.320 | −0.017 | −0.044 | 0.021 | −0.119 | −0.035 | −0.033 | 0.061 | −0.072 | 1.000 | |
YW 11 | 0.124 | 0.139 | −0.055 | 0.071 | −0.041 | 0.110 | −0.044 | −0.058 | −0.093 | −0.039 | 1.000 |
Item | YN Chicken | JF Chicken |
---|---|---|
Eggshell thickness (μm) | 416.37 ± 10.25 A | 350.87 ± 9.93 B |
Mastoid thickness (μm) | 58.82 ± 2.33 A | 69.06 ± 1.66 B |
Effective layer thickness (μm) | 357.55 ± 15.79 A | 281.81 ± 7.79 B |
Mammillary density | 130.40 ± 7.27 A | 111.20 ± 7.69 B |
Control | Treatment | Up-Regulated | Down-Regulated | Total |
---|---|---|---|---|
JF–ZG | YN–ZG | 56 | 46 | 102 |
JF–S | YN–S | 195 | 198 | 393 |
Group | Name | Pathway ID | Gens |
---|---|---|---|
Steroid biosynthesis | gga00100 | MSMO1, NSDHL, FDFT1, SQLE, LSS | |
Phototransduction | gga04744 | RHO | |
YN–ZG_JF–ZG | TGF-beta signaling pathway | gga04350 | THBS1, SMAD1, BAMBI |
Ether lipid metabolism | gga00565 | GAL3ST1 | |
Vascular smooth muscle contraction | gga04270 | ADRA1B, CALML3 | |
Steroid biosynthesis | gga00100 | NSDHL, DHCR24, LSS | |
Glycerolipid metabolism | gga00561 | DGKI, LIPC, LIPG, LPIN1 | |
Purine metabolism | gga00230 | PDE1B, PDE10A, GUCY2C, PDE6H, AK1 | |
Influenza A | gga05164 | IL18, RSAD2, BLB1, CCL5, TNFRSF10B, MX1 | |
YN–S_JF–S | Thiamine metabolism | gga00730 | AK1 |
Biosynthesis of unsaturated fatty acids | gga01040 | FADS2, SCD | |
PPAR signaling pathway | gga03320 | ANGPTL4, FADS2, SCD | |
Cytosolic DNA-sensing pathway | gga04623 | CCL5, CCL4, IL18 | |
Neuroactive ligand–receptor interaction | gga04080 | GABRA4, GZMA, APLNR, CALCA, AGT, SSTR3, GRIN2A, CALCR, GRIA4, GH | |
p53 signaling pathway | gga04115 | CDK1, AIFM2, TNFRSF10B, STEAP3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, H.; Fu, J.; Mushtaq, M.; Khan, M.; Liu, Y.; Azeem, Z.; Shi, H.; He, Y.; Zhang, R.; et al. Eggshell Quality Traits and Transcriptome Gene Screening Between Yunnong and Jingfen Chicken Breeds. Biology 2024, 13, 1048. https://doi.org/10.3390/biology13121048
Li Z, Wu H, Fu J, Mushtaq M, Khan M, Liu Y, Azeem Z, Shi H, He Y, Zhang R, et al. Eggshell Quality Traits and Transcriptome Gene Screening Between Yunnong and Jingfen Chicken Breeds. Biology. 2024; 13(12):1048. https://doi.org/10.3390/biology13121048
Chicago/Turabian StyleLi, Zijian, Hao Wu, Jing Fu, Maida Mushtaq, Muhammad Khan, Yong Liu, Zobia Azeem, Hongmei Shi, Yang He, Ru Zhang, and et al. 2024. "Eggshell Quality Traits and Transcriptome Gene Screening Between Yunnong and Jingfen Chicken Breeds" Biology 13, no. 12: 1048. https://doi.org/10.3390/biology13121048
APA StyleLi, Z., Wu, H., Fu, J., Mushtaq, M., Khan, M., Liu, Y., Azeem, Z., Shi, H., He, Y., Zhang, R., Rahman, M. A. U., Kang, J., Ge, C., & Wang, K. (2024). Eggshell Quality Traits and Transcriptome Gene Screening Between Yunnong and Jingfen Chicken Breeds. Biology, 13(12), 1048. https://doi.org/10.3390/biology13121048