First Report of the Genus Quinquelaophonte Wells, Hicks and Coull, 1982 (Copepoda: Harpacticoida: Laophontidae) from China, with Description of a New Species †
<p><span class="html-italic">Quinquelaophonte xinzhengi</span> sp. nov. female: (<b>A</b>) habitus, dorsal (Paratype MBM189286); (<b>B</b>) antennule (Paratype MBM189286); (<b>C</b>) antenna (Paratype MBM189287); (<b>D</b>) allobasis of antenna (Paratype MBM189286). Scale bars: A = 100 μm; B–D = 10 μm.</p> "> Figure 2
<p><span class="html-italic">Quinquelaophonte xinzhengi</span> sp. nov. female: (<b>A</b>) urosome, dorsal (Paratype MBM189286); (<b>B</b>) urosome, ventral (Paratype MBM189286); (<b>C</b>) urosome, lateral (Paratype MBM189286); (<b>D</b>) caudal ramus, ventral (Holotype MBM189284). Scale bar: A–D = 50 μm.</p> "> Figure 3
<p><span class="html-italic">Quinquelaophonte xinzhengi</span> sp. nov. female: (<b>A</b>) mandible (Paratype MBM189287). (<b>B</b>) gnathobase of mandible (Paratype MBM189286). (<b>C</b>) maxillule (Paratype MBM189287). (<b>D</b>) maxilla (Paratype MBM189285). (<b>E</b>) maxilliped (Paratype MBM189285). Scale bar: A–E = 10 μm.</p> "> Figure 4
<p><span class="html-italic">Quinquelaophonte xinzhengi</span> sp. nov. female: (<b>A</b>) P1, posterior (Holotype MBM189284). (<b>B</b>) P2, anterior (Holotype MBM189284). Scale bar: A–B = 50 μm.</p> "> Figure 5
<p><span class="html-italic">Quinquelaophonte xinzhengi</span> sp. nov. female: (<b>A</b>) P3, anterior (Holotype MBM189284); (<b>B</b>) P4, anterior (Paratype MBM189287); (<b>C</b>) P5, anterior (Holotype MBM189284). Scale bar: A–C = 50 μm.</p> "> Figure 6
<p><span class="html-italic">Quinquelaophonte xinzhengi</span> sp. nov. male: (<b>A</b>) habitus, dorsal (Paratype MBM189288); (<b>B</b>) antennule (Paratype MBM189288). (<b>C</b>–<b>F</b>) third to seven segment of antennule (Paratype MBM189288). Scale bars: A = 100 μm; B–F = 20 μm.</p> "> Figure 7
<p><span class="html-italic">Quinquelaophonte xinzhengi</span> sp. nov. male: (<b>A</b>) urosome, ventral (Paratype MBM189288); (<b>B</b>) P2, anterior (Paratype MBM189288). Scale bar: A–B = 50 μm.</p> "> Figure 8
<p><span class="html-italic">Quinquelaophonte xinzhengi</span> sp. nov. male: (<b>A</b>) P3, anterior (Paratype MBM189288); (<b>B</b>) P4, anterior (Paratype MBM189288); (<b>C</b>) P5, anterior (Paratype MBM189288). Scale bar: A–C = 50 μm.</p> "> Figure 9
<p><span class="html-italic">Quinquelaophonte enormis</span> Kim, Nam & Lee, 2020. female (MBM 189290): (<b>A</b>) P1, anterior; (<b>B</b>) P2, anterior; (<b>C</b>) P3, anterior; (<b>D</b>) P4, anterior; (<b>E</b>) maxilliped, anterior. Scale bars: A–E = 10 μm.</p> "> Figure 10
<p>Bayesian inference tree constructed from the concatenated dataset (COI + 18S rRNA genes) partitioned by gene and codon. SH-like approximate likelihood ratio test (aLRT, upper left) values, maximum likelihood ultrafast bootstrap scores (UFBoot, upper right) and Bayesian posterior probabilities (PP, below) are indicated adjacent to each node. Node not recovered by Maximum likelihood analysis is indicated by “--/--”.</p> ">
1. Introduction
2. Materials and Methods
2.1. Sampling and Sorting
2.2. DNA Extraction, Amplification and Sequencing
2.3. Sequence Alignment and Phylogenetic Analysis
2.4. Morphological Identification
3. Results
3.1. Systematics
Exp | Enp | |
P1 | 0.023 | 0.020 |
P2 | 0.1.123 | 0.120 |
P3 | 0.1.223 | 0.221 |
P4 | 0.123 | 0.120 |
3.2. Molecular Analyses
3.3. Morphological Characters Comparison of Quinquelaophonte Species
4. Discussion
- Key to the Northwest Pacific species of Quinquelaophonte Wells, Hicks and Coull, 1982 (based on characters of females)
- 1.
- Caudal ramus less than 3 times as long as width…………………………………………………………………………………………………….2Caudal ramus at least 3 times as long as width………………………………………………………………………………………………………3
- 2.
- P3 enp-2 with 4 elements, P4 enp-2 with 3 elements………………………………………………………………………..…………Q. bunakensisP3 enp-2 with 5 elements, P4 enp-2 with 4 elements………………………………………………………………………………………Q. koreana
- 3.
- P3 exp-3 with 2 inner setae……………………………………………………………………………………………………..…Q. xinzhengi sp. nov.P3 exp-3 with 1 inner setae………………………………………………………………………………………………………………………………4
- 4.
- All body somite without hyaline frills, P4 exp-3 without inner seta………………………………………………………….…………Q. enormisAll body somite covered with minute integumental ornaments, P4 exp-3 with one inner seta…………………..……………….…Q. sominer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wells, J.B.J.; Hicks, G.R.F.; Coull, B.C. Common Harpacticoid Copepods from New Zealand Harbours and Estuaries. N. Z. J. Zool. 1982, 9, 151–184. [Google Scholar] [CrossRef]
- Sewell, R.B.S. Fauna of the Chilka Lake, Crustacea Copepoda. In Memoirs of the Indian Museum; Indian Museum: Kolkata, India, 1924; Volume 5, pp. 771–852. [Google Scholar]
- Kim, J.; Nam, E.; Lee, W. Quinquelaophonte enormis sp. nov., a new interstitial copepod (Harpacticoida: Laophontidae) from Korea. PeerJ 2020, 8, e10007. [Google Scholar] [CrossRef]
- Kim, J.; Lee, W. An integrative approach for identifying Quinquelaophonte (Harpacticoida, Laophontidae) species from Korea with the description of a new species. Diversity 2023, 15, 1168. [Google Scholar] [CrossRef]
- Wilson, C.B. Copepods of the Woods Hole Region, Massachusetts. In Bulletin of the United States National Museum; United States National Museum: Washington, DC, USA, 1932; Volume 158, 635p. [Google Scholar]
- Bozic, B. Copépodes Harpacticoïdes de La Réunion VI. Bull. Mus. Natl. d’Hist. Nat. 1969, 41, 867–882. [Google Scholar]
- Hamond, R. The Harpacticoid Copepods (Crustacea) of the Saline Lakes in Southeast Australia, with Special Reference to the Laophontidae. Rec. Aust. Mus. 1973, 28, 393–420. [Google Scholar] [CrossRef]
- Mielke, W. On a small collection of Laophontidae (Copepoda) from Sulawesi, Indonesia. Microfauna Mar. 1997, 11, 223–250. [Google Scholar]
- Lee, W. A Marine Harpacticoid, Quinquelaophonte koreana sp. nov. from a Sandy Beach in Korea (Crustacea: Copepoda). Zool. Sci. 2003, 20, 657–668. [Google Scholar] [CrossRef]
- Walker-Smith, G.K. A new species of Quinquelaophonte (Crustacea: Copepoda: Harpacticoida: Laophontidae) from Port Phillip Bay, Victoria, Australia. Mem. Mus. Vic. 2004, 61, 217–227. [Google Scholar] [CrossRef]
- Bjornberg, T. Quinquelaophonte varians n. sp. (Copepoda, Harpacticoida, Crustacea) and Notes on Its Developmental Stages. Pan-Am. J. Aquat. Sci. 2010, 5, 62–77. [Google Scholar]
- Sciberras, M.; Bulnes, V.N.; Cazzaniga, N.J. A New Species of Quinquelaophonte (Copepoda: Harpacticoida) from Argentina. Zoologia 2014, 31, 496–502. [Google Scholar] [CrossRef]
- Charry, M.P.; Wells, J.B.J.; Keesing, V.; Smith, K.F.; Stringer, T.J.; Tremblay, L.A. Quinquelaophonte aurantius sp. nov., a New Harpacticoid Species (Copepoda: Harpacticoida: Laophontidae: Quinquelaophonte) from New Zealand. N. Z. J. Zool. 2019, 46, 301–320. [Google Scholar] [CrossRef]
- Lang, K. Copepoda Harpacticoida from the Californian Pacific Coast. K. Sven. Vetenskapsakademiens Handl. 1965, 10, 1–560. [Google Scholar]
- Stringer, T.J.; Glover, C.N.; Keesing, V.; Northcott, G.L.; Gaw, S.; Tremblay, L.A. Development of acute and chronic sediment bioassays with the harpacticoid copepod Quinquelaophonte sp. Ecotoxicol. Environ. Saf. 2014, 99, 82–91. [Google Scholar] [CrossRef]
- Stringer, T.J.; Glover, C.N.; Keesing, V.; Northcott, G.L.; Tremblay, L.A. Development of a harpacticoid copepod bioassay: Selection of species and relative sensitivity to zinc, atrazine and phenanthrene. Ecotoxicol. Environ. Saf. 2012, 80, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Huys, R.; Lee, J. Philippiphonte aspidosoma gen. et sp. n. a radically divergent member of the Laophontidae from shell gravel in the East Sea, South Korea, including a review of Folioquinpes Fiers & Rutledge, 1990 (Copepoda, Harpacticoida). ZooKeys 2018, 775, 15–46. [Google Scholar]
- Dai, A.Y.; Tai, A.Y.; Song, Y.Z. Harpacticoida. In Fauna Sinica. Crustacea. Freshwater Copepoda; Shen, C.J., Shen, S.J., Eds.; Science Press: Beijing, China, 1979; pp. 164–300. (In Chinese) [Google Scholar]
- Mu, F.H. Studies on Taxonomy and Ecology of Benthic Copepods in the Bohai Sea, China. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2000. [Google Scholar]
- Lian, G.; Sun, R.; Wang, Y.; Huang, J. Species Diversity of Marine Harpacticoid Copepods in China’s Seas and Adjacent Waters; Science Press: Beijing, China, 2022; p. 206. [Google Scholar]
- Medlin, L.; Elwood, H.J.; Stickel, S.; Sogin, M.L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 1988, 71, 491–499. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.R.; Lutz, R.V.; Vrijenhoek, R.C. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 1994, 3, 294–299. [Google Scholar]
- Wu, Y.; Ma, L.; Kou, Q. Description of a New Species of Parathalestris Brady & Robertson, 1873 (Copepoda: Harpacticoida: Thalestridae) from China, with a Key to Its Affiliated Species Group. Diversity 2023, 15, 577. [Google Scholar] [CrossRef]
- Li, D.H.; Liu, C.M.; Luo, R.B.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 412. [Google Scholar] [CrossRef]
- Rose, R.; Golosova, O.; Sukhomlinov, D.; Tiunov, A.; Prosperi, M. Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics 2018, 35, 1963–1965. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef]
- Vaidya, G.; Lohman, D.J.; Meier, R. Sequence Matrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree 1.4.3. 2016. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 25 February 2025).
- Huys, R.; Gee, J.M.; Moore, C.G.; Hamond, R. Marine and brackish water harpacticoid copepods. Part 1. In Synopses of the British Fauna (New Series); Kermack, D.M., Barnes, R.S.K., Crothers, J.H., Eds.; Linnean Society of London and the Estuarine and Coastal Sciences Association by Field Studies Council: London, UK, 1996; Volume 51, pp. 1–352. [Google Scholar]
- Wells, J.B.J. An Annotated Checklist and Keys to the Species of Copepoda Harpacticoida (Crustacea). Zootaxa 2007, 1568, 1–872. [Google Scholar] [CrossRef]
- Coull, B.C. On the Two Laophontid Harpacticoid Copepods Described by Wilson as Laophonte capillata, with Keys to the Genus Paronychocamptus. Trans. Am. Microsc. Soc. 1976, 95, 35–45. [Google Scholar] [CrossRef]
- Coull, B.C. A New Species of Pseudobradya and the Rediscovery and Correction of Quinquelaophonte capillata (Copepoda: Harpacticoida). Trans Am. Microsc. Soc. 1986, 105, 121–129. [Google Scholar] [CrossRef]
- Gómez, S.; Morales-Serna, F.N. On a Small Collection of Laophontidae T. Scott (Copepoda: Harpacticoida) from Mexico. II. New Records of Quinquelaophonte Wells, Hicks and Coull and Description of Onychoquinpes permixtionis gen. nov. et sp. nov. J. Nat. Hist. 2013, 47, 381–408. [Google Scholar] [CrossRef]
- Wells, J.B.J.; McKenzie, K.G. Report On a Small Collection of Benthic Copepods From Marine and Brackish Waters of Aldabra, Indian Ocean. Crustaceana 1973, 25, 133–146. [Google Scholar]
- Fuentes-Reinés, J.M.; Suárez-Morales, E. Annotated checklist and new records of harpacticoida (copepoda) from a coastal system of northern Colombia, South America. Crustaceana 2014, 87, 212–255. [Google Scholar] [CrossRef]
Family | Species | Voucher ID | Locality | COI | 18S |
---|---|---|---|---|---|
Laophontidae | Quinquelaophonte aurantius | MA73574 | New Zealand | MH444814 | MH444815 |
Quinquelaophonte enormis | NIBRIV0000865946 | Korea | MT416602 | MT410708 | |
MBM189290 | China | PV189950 | PV189457 | ||
Quinquelaophonte sominer | sed81-06 | Korea | OR659904 | OR656936 | |
Quinquelaophonte xinzhengi sp. nov. | MBM189284 | China | PV189951 | PV189458 | |
MBM189285 | China | PV189952 | PV189459 | ||
Platychelipus littoralis | ACC3 | Netherlands | SRR10208648 * | SRR10208648 * | |
Paralaophonte (Paralaophonte) congenera | LEGO-HAR027 | Korea | KR049011 | KR048738 | |
Pseudonychocamptus spinifer | DZMB010 | North Sea | MF077898 | MF077714 | |
Laophontina sp. | DZMB026 | Mediterranean Sea | N/A | MF077713 | |
Vostoklaophonte eupenta | C20 | Sea of Japan | N/A | MG012753 | |
Microchelonia koreensis | C15 | Sea of Japan | N/A | MG012752 | |
Harpacticidae | Tigriopus californicus | USA | DQ913891 ** | AF363306 | |
Tigriopus japonicus | Korea | AY959338 ** | EU054307 |
Species | Voucher ID | Collecting Locality | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|---|
1 | Q. aurantius | MA73574 | New Zealand | – | 1.2 | 1.2 | 1.2 | 0.0 | 0.0 |
2 | Q. enormis | NIBRIV0000865946 | Korea | 22.9 | – | 0.0 | 1.2 | 1.2 | 1.2 |
3 | MBM189290 | China | 22.6 | 1.1 | – | 1.2 | 1.2 | 1.2 | |
4 | Q. sominer | sed81-06 | Korea | 24.8 | 27.8 | 27.6 | – | 1.2 | 1.2 |
5 | Q. xinzhengi sp. nov. | MBM189284 | China | 26.2 | 27.0 | 27.0 | 26.7 | – | 0.0 |
6 | MBM189285 | China | 26.2 | 27.0 | 27.0 | 26.7 | 0.0 | – |
Gene | Partition Delineation | Subset | Subset Partition | Model Selected by ModelFinder and Implemented in IQ-TREE2 | Model Selected by ModelFinder and Implemented in MrBayes |
---|---|---|---|---|---|
18S rRNA | 1–1691 | 18S rRNA + COI_2nd | 1 | TNe+I+G4 | K2P+I+G4 |
COI_1st codon | 1692–2351\3 | ||||
COI_2nd codon | 1693–2351\3 | COI_1st codon | 2 | GTR+F+I+G4 | GTR+F+I+G4 |
COI_3rd codon | 1694–2351\3 | COI_3rd codon | 3 | GTR+F+I+G4 | GTR+F+I+G4 |
Species | No. of Seta | ♀ Length Ratio | Type of Elements | References | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
♀ A1 Segments | A2 Exp | Gnathobase of Md | Syncoxa of Mxp | Enp of Mxp | ♀ P2-P4 enp-2 | ♀ P3-P4 exp-3 | ♂ P4 exp-2 | P5 Exp/Enp ♀ (♂) | Caudal Ramus | P1 enp-1 | P1 enp-2 claw/seta | P1 enp-2 | ♀ P5 with Bulbous Seta | ||
Q. xinzhengi sp. nov. | 6 | 3 | 1 | 2 | 1 | 3:5:3 | 7:6 | 1 | 6/5 (5) | 3.2 | 5 | ≈4.3 | 2 setae +3 spines | no | this study |
Q. sominer | 6 | 3 | 0 | 2 | 1 | 3:4–5:2–3 | 6:6 a | 1 | 6/5 (5) | 3 | 6 | ≈2.1 | 2 setae +3 spines | no | [4] |
Q. enormis | 6 | 3 | 0 | 2 | 1 | 3:5:3 | 5:5 b | 0 b | 6/5 (5) | 3.5 | 6.1 | ≈3.8 | 2 setae +3 spines | no | [3] |
Q. aurantius | 6 | 3 | 0 | 2 | 1 | 3:5:3 | 6:6 | 0–1 | 6/5 (5) | 3.5–3.8 | 5.5 | ≈3.5 | 2 setae +3 spines | no | [13] |
Q. aestuarii | 6 | 3 | 2 | 2 | 0 | 3:5:3 | 6:6 | 1 | 6/5 (5) | 4 | 8 | ≈7.8 | 2 setae +3 spines | no | [12] |
Q. varians | 6 | 3 | 1 | 1 | 0 | 3:5:3 | 6:6 | 0 | 6/5 (5) | 4 | 5 | ≈3.6 | 2 setae +3 spines | no | [11] |
Q. prolixasetae | 6 | 3 | 0 | 2 | 1 | 3:5:3 | 6:5 | 1 | 6/5 (5) | 3 | 5 | <0.5 | 5 setae | no | [10] |
Q. koreana | 6 | 2 | 0 | 2 | 1 | 3:5:4 | 7:6 | 1 | 6/5 (5) | 1.1 | 5 | ≈4.7 | 2 setae +3 spines | no | [9] |
Q. bunakensis | 6 | 3 | 1 | 1 | 1 | 3:4:3 | 7:6 | 1 | 6/5 (5) c | 2.1 | 4.7 | ≈2.5 | 2 setae +3 spines | no | [8] |
Q. candelabrum | 5 | 2 | 0 | 1 | 1 | 3:5:3–4 | 7:6 | 1 | 5/5 (5) | 2 | 5.8 | ≈3.5 | 2 setae +3 spines | no | [1,4] |
Q. wellsi | 6 | 3 | 0 | 2 | 0 | 3:5:3–4 | 7:6 | 1 | 6/5 (5) | 2.7 | 6.3 | ≈1.0 | 2 setae +3 spines | no | [7] |
Q. parasigmoides | 6 | 3 | - | - | - | 3:6:3 | 6:6 | 1 | 6/5 (5) | 2.5–3.0 | - | - | 2 setae +3 spines | no | [6] |
Q. longifurcata | 6 | 3 | 1 | 1 | 1 | 3:5:4 | 5–6:5 | 0 | 6/5 (5) | 4 | 5.1 | ≈2.1 | 2 setae +3 spines | no | [14] |
Q. capillata | 6 | 2 | - | 1 | 0 | 4:6:3 | 7:5 | 1 | 5/4 (5) | 2.4 | 6.3 | - | 2 setae +3 spines | no | [5] |
6 | 3 | 0 | 2 | 1 | 3:5:3 | 6:6 | 1 | 6/5 (5) | 3–4 | - | - | 5 setae | no | [39,40] | |
6 | 3 | 1 | 1 | 1 | 3:5:3 | 6:6 | - | 6/5 (5) | 3 | 5.6 | ≈2.6 | 2 setae +3 spines | no | [41] | |
Q. quinquespinosa | 6 | 4 | 1 | 1 | 0 | 3:5:3 | 7:- | - | 6/5 (5) | 2.5 | 4.6 | - | 2 setae +3 spines | no | [2,3] |
6 | 2 | 2 | 1 | 3:5:4 | 7:6 | 1 | 6/5 (5) | 2 | 3 | ≈4.0 | 2 setae +3 spines | no | [42] | ||
6 | 3 | 1 | 2 | 1 | 3:5:3–4 | 7:7 | 1 | 6/5 (-) | 2.3 | 3.2 | ≈3.3 | 2 setae +3 spines | no | [41] | |
6 | - | - | - | - | 3:5:3 | 7:7 | 1 | 6/5 (-) | 3 | 3.86 | ≈4.0 | 2 setae +3 spines | no | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Kou, Q.; Ma, L. First Report of the Genus Quinquelaophonte Wells, Hicks and Coull, 1982 (Copepoda: Harpacticoida: Laophontidae) from China, with Description of a New Species. Biology 2025, 14, 271. https://doi.org/10.3390/biology14030271
Hou Z, Kou Q, Ma L. First Report of the Genus Quinquelaophonte Wells, Hicks and Coull, 1982 (Copepoda: Harpacticoida: Laophontidae) from China, with Description of a New Species. Biology. 2025; 14(3):271. https://doi.org/10.3390/biology14030271
Chicago/Turabian StyleHou, Zhengcun, Qi Kou, and Lin Ma. 2025. "First Report of the Genus Quinquelaophonte Wells, Hicks and Coull, 1982 (Copepoda: Harpacticoida: Laophontidae) from China, with Description of a New Species" Biology 14, no. 3: 271. https://doi.org/10.3390/biology14030271
APA StyleHou, Z., Kou, Q., & Ma, L. (2025). First Report of the Genus Quinquelaophonte Wells, Hicks and Coull, 1982 (Copepoda: Harpacticoida: Laophontidae) from China, with Description of a New Species. Biology, 14(3), 271. https://doi.org/10.3390/biology14030271