WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval
<p>An overview of the use case of a worldwide CBMIR. Pathologists send their query (<b>Q</b>) to the worldwide CBMIR since they need a second opinion to make a more confident decision. Then, the model retrieved top <span class="html-italic">K</span> similar images (<b>S-R</b>), and the pathologists can obtain a second opinion from whole over the world.</p> "> Figure 2
<p>A comprehensive illustration of the entire process in a CBMIR, demonstrating the utilization of DL models to acquire images from a hospital and offer a second opinion for pathologists.</p> "> Figure 3
<p>The structure of the custom-built CAE. The stride in the encoder = <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>]</mo> </mrow> </semantics></math>, in the bottleneck = <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>, in the decoder related to the encoder = <math display="inline"><semantics> <mrow> <mo>[</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math>. The kernel size of the layers in all parts of the structure and for each layer is 3.</p> "> Figure 4
<p>The pipeline of CBMIR. It contains three important sections, namely (1) FE, (2) indexing and saving, and (3) similarity measure and search.</p> "> Figure 5
<p>The FedCBMIR pipeline consists of four main steps. Step 1: the server initializes weights, and then sends to client for local training. Step 2: client starts local training. Step 3: client updates local weights to the server side. Step 4: the server side aggregates and updates the distributed weights. (<b>a</b>) An overview of the FedCBMIR pipeline with two clients training, fed with BreaKHis 40× and CAM17 data sets. (<b>b</b>) An overview of the FedCBMIR pipeline with four clients training over clusters at universities and companies with BreaKHis in four different magnifications.</p> "> Figure 6
<p>Three random queries from Hospital 5 of CAM17 (test set). Corresponding to each query, the top 5 images are shown from four other hospitals with the most similar patterns to the query. The green and red lines around the retrieved images explain the correct and wrong retrieved images.</p> "> Figure 7
<p>(<b>a</b>) shows the results of local training on CAM17 in the TY server. (<b>b</b>) is the result of the searching task in CAM17 by applying the well-trained FedCBMIR model from the first experiment.</p> "> Figure 8
<p>(<b>a</b>–<b>d</b>) show the CMs as a result of local training and searching at the same magnification. (<b>e</b>–<b>h</b>) are the CMs of FL models. The reported results are with top <span class="html-italic">K</span> retrieved images. In all CMs, "0” and “1” indicate “<b>Benign</b>” and “<b>Malignant</b>”, respectively. “<b>True labels</b>” and “<b>Predicted labels</b>” correspond to the query and the retrieved labels, accordingly.</p> "> Figure 9
<p>BreaKHis images at four different magnification levels (40×, 100×, 200×, and 400×). The higher magnification offers increased access to relevant information with a reduced field of view.</p> "> Figure 10
<p>An indirect comparison between the results of FedCBMIR in both experiments and some recent methods for different amounts of <span class="html-italic">K</span>.</p> "> Figure 11
<p>Five lines of random histopathological WSIs with their magnifications. The first column is the query, and the following five columns show the retrieved images. This figure brings a proper overview of <span class="html-italic"><b>Sen2</b></span>. The retrieved image with the same and different labels as the query is indicated by the green and red borders, accordingly.</p> ">
Abstract
:1. Introduction
- We proposed a novel international FL-based CBMIR, which is named FedCBMIR, to aid pathologists in breast cancer diagnosis.
- An unsupervised network was used as a feature extractor (FE) to extract the features of the images for the tasks trained with scanty data sets.
- We proposed a custom-built convolutional auto-encoder (CAE) to learn the dependencies and extract the features of the images with higher discriminating values.
- In order to address patient data privacy concerns, we employed the privacy preservation capability of FL. This approach ensures that the data in each institution remains decentralized and confidential, as there is no need to be shared with a central server.
- Through extensive tests on varying data set distributions among individual clients, we verified the robustness of our proposed solution. It proved to be independent of the data quality held by each client.
2. Related Work
2.1. Content-Based Medical Image Retrieval (CBMIR)
2.2. Federated Learning (FL)
3. Experiments
Algorithm 1 FedCBMIR(FedAvg) |
Server (Aggregator) Client (CBMIR) |
Initialization……………………………………………………………………………………………………………………… |
M ◃ The number of clients |
R ◃ The communication rounds |
E ◃ The local epochs |
B ◃ The local batch size H ◃ hyperparameters |
◃ The local learning rate ◃ model structure |
◃ weights ◃ local data set of client |
m |
Phase 1…………………………………………………………………………………………………………………………… |
1: for all round do |
2: |
3: for all client do |
4: |
ClientUpdate: ◃ execute on client m |
5: train with model structure |
6: |
7: for all do |
8: for all do |
9: |
return to server |
Phase 2…………………………………………………………………………………………………………………………… |
FederatedAveraging: ◃ execute on server |
10: |
3.1. Materials
3.1.1. BreaKHis
3.1.2. CAMELYON17 (CAM17)
3.2. Data Distribution
3.3. Training the Convolutional Auto-Encoder in Each Node
3.4. Local Training
3.5. Federated Learning Configuration
4. Discussion and Results
4.1. Evaluation
4.2. Results of EXP 1
4.3. Results of EXP 2
Methods | CBMIR, EXP 1 | FedCBMIR, EXP 1 | FedCBMIR, EXP 2, Sen1 | Method [36] | MCCH [37] | KSH, 64 Bits [32] | JKSH, 64 Bits [33] |
---|---|---|---|---|---|---|---|
Precision | 0.93 | 0.97 | 0.96 | 0.95 | 0.94 | 0.91 | 0.87 |
5. Conclusions
6. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Accuracy |
CLARIFY | CLoud ARtificial Intelligence For pathologY |
CAD | Computer-Aided Diagnosis |
CM | Confusion Matrix |
CBMIR | Content-Based Medical Image Retrieval |
CAE | Convolutional Auto-Encoder |
DL | Deep Learning |
FedCBMIR | Federated Content-Based Medical Image Retrieval |
FL | Federated Learning |
FE | Feature Extractor |
F1S | F1 Score |
H&E | Hematoxylin and Eosin |
IHC | Immunohistochemistry |
TFF | Tensorflow Federated |
WSIs | Whole-Slide Images |
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Fu, C.; Tie, M.; Sham, C.W.; Ma, H. RGSB-UNet: Hybrid Deep Learning Framework for Tumour Segmentation in Digital Pathology Images. Bioengineering 2023, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, R.; Prasad, K.; Udupa, C.B.K. Breast histopathological image analysis using image processing techniques for diagnostic purposes: A methodological review. J. Med. Syst. 2022, 46, 7. [Google Scholar] [CrossRef]
- Morelli, P.; Porazzi, E.; Ruspini, M.; Restelli, U.; Banfi, G. Analysis of errors in histology by root cause analysis: A pilot study. J. Prev. Med. Hyg. 2013, 54, 90. [Google Scholar]
- World Health Organization. Laboratory Quality Standards and Their Implementation; World Health Organization: Geneva, Switzerland, 2011.
- Kim, M.Y.; Choi, N.; Yang, J.H.; Kim, S.; Shin, S.J.; Park, M.H.; Moon, W.; Yoo, Y.B.; Kim, W.H.; Ko, E.Y. Diagnostic accuracy of breast cancer in core needle biopsy using a standardized reporting system. J. Clin. Pathol. 2012, 65, 790–794. [Google Scholar]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Fuster, S.; Khoraminia, F.; Kiraz, U.; Kanwal, N.; Kvikstad, V.; Eftestøl, T.; Zuiverloon, T.C.; Janssen, E.A.; Engan, K. Invasive cancerous area detection in Non-Muscle invasive bladder cancer whole slide images. In Proceedings of the 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Nafplio, Greece, 26–29 June 2022; pp. 1–5. [Google Scholar]
- Zheng, Y.; Jiang, Z.; Zhang, H.; Xie, F.; Ma, Y.; Shi, H.; Zhao, Y. Size-scalable content-based histopathological image retrieval from database that consists of WSIs. IEEE J. Biomed. Health Inform. 2017, 22, 1278–1287. [Google Scholar] [CrossRef]
- Baâzaoui, A.; Abderrahim, M.; Barhoumi, W. Dynamic distance learning for joint assessment of visual and semantic similarities within the framework of medical image retrieval. Comput. Biol. Med. 2020, 122, 103833. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Lu, M.Y.; Chen, R.J.; Kong, D.; Lipkova, J.; Singh, R.; Williamson, D.F.; Chen, T.Y.; Mahmood, F. Federated learning for computational pathology on gigapixel whole slide images. Med. Image Anal. 2022, 76, 102298. [Google Scholar] [CrossRef]
- Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020, 10, 12598. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, P.; Liu, H.; Ma, X.; Shang, Z. Two-stage content based image retrieval using sparse representation and feature fusion. Multimed. Tools Appl. 2022, 81, 16621–16644. [Google Scholar] [CrossRef]
- Tabatabaei, Z.; Colomer, A.; Engan, K.; Oliver, J.; Naranjo, V. Residual block Convolutional Auto Encoder in Content-Based Medical Image Retrieval. In Proceedings of the 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Nafplio, Greece, 26–29 June 2022; pp. 1–5. [Google Scholar]
- Kalra, S.; Tizhoosh, H.R.; Choi, C.; Shah, S.; Diamandis, P.; Campbell, C.J.; Pantanowitz, L. Yottixel–an image search engine for large archives of histopathology whole slide images. Med. Image Anal. 2020, 65, 101757. [Google Scholar] [CrossRef]
- Mehta, N.; Alomari, R.S.; Chaudhary, V. Content based sub-image retrieval system for high resolution pathology images using salient interest points. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 3719–3722. [Google Scholar] [CrossRef]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Hegde, N.; Hipp, J.D.; Liu, Y.; Emmert-Buck, M.; Reif, E.; Smilkov, D.; Terry, M.; Cai, C.J.; Amin, M.B.; Mermel, C.H.; et al. Similar image search for histopathology: SMILY. NPJ Digit. Med. 2019, 2, 56. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan, B.; et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 2019, 1, 374–388. [Google Scholar]
- Reddi, S.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.; Konečnỳ, J.; Kumar, S.; McMahan, H.B. Adaptive federated optimization. arXiv 2020, arXiv:2003.00295. [Google Scholar]
- Ziller, A.; Trask, A.; Lopardo, A.; Szymkow, B.; Wagner, B.; Bluemke, E.; Nounahon, J.M.; Passerat-Palmbach, J.; Prakash, K.; Rose, N.; et al. Pysyft: A library for easy federated learning. In Federated Learning Systems: Towards Next-Generation AI; Springer: Cham, Switzerland, 2021; pp. 111–139. [Google Scholar]
- Beutel, D.J.; Topal, T.; Mathur, A.; Qiu, X.; Parcollet, T.; de Gusmão, P.P.; Lane, N.D. Flower: A friendly federated learning research framework. arXiv 2020, arXiv:2007.14390. [Google Scholar]
- Launet, L.; Wang, Y.; Colomer, A.; Igual, J.; Pulgarín-Ospina, C.; Koulouzis, S.; Bianchi, R.; Mosquera-Zamudio, A.; Monteagudo, C.; Naranjo, V.; et al. Federating Medical Deep Learning Models from Private Jupyter Notebooks to Distributed Institutions. Appl. Sci. 2023, 13, 919. [Google Scholar] [CrossRef]
- Truhn, D.; Arasteh, S.T.; Saldanha, O.L.; Müller-Franzes, G.; Khader, F.; Quirke, P.; West, N.P.; Gray, R.; Hutchins, G.G.; James, J.A.; et al. Encrypted federated learning for secure decentralized collaboration in cancer image analysis. medRxiv 2022. [Google Scholar] [CrossRef]
- Khader, F.; Mueller-Franzes, G.; Wang, T.; Han, T.; Arasteh, S.T.; Haarburger, C.; Stegmaier, J.; Bressem, K.; Kuhl, C.; Nebelung, S.; et al. Medical Diagnosis with Large Scale Multimodal Transformers–Leveraging Diverse Data for More Accurate Diagnosis. arXiv 2022, arXiv:2212.09162. [Google Scholar]
- Zhang, L.; Xia, R.; Tian, W.; Cheng, Z.; Yan, Z.; Tang, P. FLSIR: Secure Image Retrieval Based on Federated Learning and Additive Secret Sharing. IEEE Access 2022, 10, 64028–64042. [Google Scholar] [CrossRef]
- Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. Protoc. 2008, 2008, pdb-prot4986. [Google Scholar] [CrossRef] [PubMed]
- Tellez, D.; Litjens, G.; Bándi, P.; Bulten, W.; Bokhorst, J.M.; Ciompi, F.; Van Der Laak, J. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Med. Image Anal. 2019, 58, 101544. [Google Scholar] [CrossRef] [PubMed]
- ElAlami, M.E. A new matching strategy for content based image retrieval system. Appl. Soft Comput. 2014, 14, 407–418. [Google Scholar] [CrossRef]
- Rajasenbagam, T.; Jeyanthi, S.; Pandian, J.A. Detection of pneumonia infection in lungs from chest X-ray images using deep convolutional neural network and content-based image retrieval techniques. J. Ambient. Intell. Humaniz. Comput. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Dundar, M.; Badve, S.; Zhang, S. Towards large-scale histopathological image analysis: Hashing-based image retrieval. IEEE Trans. Med. Imaging 2014, 34, 496–506. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, S.; Huang, J.; Yang, L.; Metaxas, D.N. Scalable histopathological image analysis via supervised hashing with multiple features. Med. Image Anal. 2016, 34, 3–12. [Google Scholar] [CrossRef]
- Wang, H.; Cruz-Roa, A.; Basavanhally, A.; Gilmore, H.; Shih, N.; Feldman, M.; Tomaszewski, J.; Gonzalez, F.; Madabhushi, A. Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging 2014, 1, 034003. [Google Scholar] [CrossRef]
- Zheng, L.; Wetzel, A.W.; Gilbertson, J.; Becich, M.J. Design and analysis of a content-based pathology image retrieval system. IEEE Trans. Inf. Technol. Biomed. 2003, 7, 249–255. [Google Scholar] [CrossRef]
- Minarno, A.E.; Ghufron, K.M.; Sabrila, T.S.; Husniah, L.; Sumadi, F.D.S. Cnn based autoencoder application in breast cancer image retrieval. In Proceedings of the 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 21–22 July 2021; pp. 29–34. [Google Scholar]
- Gu, Y.; Yang, J. Multi-level magnification correlation hashing for scalable histopathological image retrieval. Neurocomputing 2019, 351, 134–145. [Google Scholar] [CrossRef]
- Kanwal, N.; Pérez-Bueno, F.; Schmidt, A.; Engan, K.; Molina, R. The devil is in the details: Whole slide image acquisition and processing for artifacts detection, color variation, and data augmentation: A review. IEEE Access 2022, 10, 58821–58844. [Google Scholar] [CrossRef]
Magnification | Benign | Malignant | Total |
---|---|---|---|
40× | 625 | 1370 | 1995 |
100× | 644 | 1437 | 2081 |
200× | 623 | 1390 | 2013 |
400× | 588 | 1232 | 1820 |
Total | 2480 | 5429 | 7909 |
Client | Region | Institution | Data Set | GPU Type |
---|---|---|---|---|
1 | Valencia, Spain | TY | CAM17 | NVIDIA GeForce RTX 3090 |
2 | Amsterdam, The Netherlands | UvA | BreakHis 40× | NVIDIA Tesla T4 |
Client | Region | Institution | Magnification | GPU Type |
---|---|---|---|---|
1 | Granada, Spain | UGR | 40× | NVIDIA GeForce RTX 3090 |
2 | Valencia, Spain | TY | 100× | NVIDIA GeForce RTX 3090 |
3 | Amsterdam, The Netherlands | UvA | 200× | NVIDIA Tesla T4 |
4 | Valencia, Spain | UPV | 400× | NVIDIA TITAN V |
Data | Model | Accuracy | Precision | F1S | Training Time | Searching Time |
---|---|---|---|---|---|---|
CAM17 (TY) | CBMIR | 0.96 | 0.96 | 0.96 | 8.7 h | 0.28 S |
FedCBMIR (Fedavg) | 0.981 | 0.970 | 0.981 | 6.21 h | 0.29 S | |
FedCBMIR (FedAdagrad) | 0.98 | 0.97 | 0.98 | 7.92 h | 0.30 S | |
BreaKHis 40× (UvA) | CBMIR | 0.93 | 0.94 | 0.95 | 9.33 h | 0.018 S |
FedCBMIR (Fedavg) | 0.978 | 0.969 | 0.984 | 6.59 h | 0.024 S | |
FedCBMIR (FedAdagrad) | 0.94 | 0.92 | 0.96 | 6.11 h | 0.04 S |
Client | Model | Training Time | Accuracy | Precision | F1S |
---|---|---|---|---|---|
1 | CBMIR | 9.37 h | 0.95 | 0.93 | 0.96 |
FedCBMIR | 6.82 h | 0.97 | 0.96 | 0.98 | |
2 | CBMIR | 5.45 h | 0.90 | 0.88 | 0.94 |
FedCBMIR | 5.78 h | 0.94 | 0.92 | 0.96 | |
3 | CBMIR | 8.59 h | 0.89 | 0.87 | 0.93 |
FedCBMIR | 6.65 h | 0.92 | 0.89 | 0.94 | |
4 | CBMIR | 8.95 h | 0.92 | 0.89 | 0.94 |
FedCBMIR | 6.83 h | 0.96 | 0.94 | 0.97 |
Client | Accuracy | Precision | F1S |
---|---|---|---|
1 | 0.94 | 0.92 | 0.95 |
2 | 0.95 | 0.93 | 0.96 |
3 | 0.95 | 0.93 | 0.96 |
4 | 0.95 | 0.92 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabatabaei, Z.; Wang, Y.; Colomer, A.; Oliver Moll, J.; Zhao, Z.; Naranjo, V. WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering 2023, 10, 1144. https://doi.org/10.3390/bioengineering10101144
Tabatabaei Z, Wang Y, Colomer A, Oliver Moll J, Zhao Z, Naranjo V. WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering. 2023; 10(10):1144. https://doi.org/10.3390/bioengineering10101144
Chicago/Turabian StyleTabatabaei, Zahra, Yuandou Wang, Adrián Colomer, Javier Oliver Moll, Zhiming Zhao, and Valery Naranjo. 2023. "WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval" Bioengineering 10, no. 10: 1144. https://doi.org/10.3390/bioengineering10101144
APA StyleTabatabaei, Z., Wang, Y., Colomer, A., Oliver Moll, J., Zhao, Z., & Naranjo, V. (2023). WWFedCBMIR: World-Wide Federated Content-Based Medical Image Retrieval. Bioengineering, 10(10), 1144. https://doi.org/10.3390/bioengineering10101144