An Inquiry into the Evolutionary Game among Tripartite Entities and Strategy Selection within the Framework of Personal Information Authorization
<p>The relationship of users, App providers and the government.</p> "> Figure 2
<p>Users’ dynamical replication phase diagrams.</p> "> Figure 3
<p>App providers’ dynamical replication phase diagrams.</p> "> Figure 4
<p>Government’s dynamical replication phase diagrams.</p> "> Figure 5
<p>Example diagram of the impact of <span class="html-italic">x</span> changes on tripartite evolution strategies.</p> "> Figure 6
<p>Example diagram of the impact of <span class="html-italic">y</span> changes on tripartite evolution strategies.</p> "> Figure 7
<p>Example diagram of the impact of <span class="html-italic">z</span> changes on tripartite evolution strategies.</p> "> Figure 8
<p>Example diagram of the impact of <span class="html-italic">R</span><sub>1</sub> changes on users’ evolution strategies.</p> "> Figure 9
<p>Example diagram of the impact of <span class="html-italic">C</span><sub>1</sub> changes on users’ evolution strategies.</p> "> Figure 10
<p>Example diagram of the impact of <span class="html-italic">C</span><sub>2</sub> changes on App providers’ evolution strategies.</p> "> Figure 11
<p>Example diagram of the impact of <span class="html-italic">W</span><sub>2</sub> changes on App providers’ evolution strategies.</p> "> Figure 12
<p>Example diagram of the impact of <span class="html-italic">C</span><sub>3</sub> changes on the government’s evolution strategies.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Research Overview of Evolutionary Game Theory
2.2. Research Overview of EGT in the Context of Privacy
2.3. Research Overview of Factors Influencing Tripartite Decision-Making
3. Problem Description and Model Building
3.1. Problem Description
3.2. Assumptions and Parameters
3.3. Model Building
4. Analysis of the Evolutionary Game Model
4.1. Analysis of Replication Dynamics
4.2. Stability Analysis of Individual Subjects
4.2.1. Users’ Evolutionary Stability Analysis
- (1)
- Under the premise that , for an arbitrary value of x, we perpetually have U1(x) ≡ 0, indicating that regardless of the strategic selection chosen by users, it inherently embodies an ESS;
- (2)
- Under the premise that , and guided by principles of stability theorem, there prevail two equilibrium strategies, specifically x = 0 and x = 1, which fulfill the criterion that U1(x) = 0. Differentiating U1(x) yields
4.2.2. App Providers’ Evolutionary Stability Analysis
- (1)
- Under the premise that , for an arbitrary value of y, we perpetually have U2(y) ≡ 0, indicating that regardless of the strategic selection chosen by App providers, it inherently embodies an ESS;
- (2)
- Under the premise that , and guided by principles of stability theorem, there prevail two equilibrium strategies, specifically y = 0 and y = 1, which fulfill the criterion that U2(y) = 0. Differentiating U2(y) yields
4.2.3. The Government’s Evolutionary Stability Analysis
- (1)
- Under the premise that , for an arbitrary value of z, we perpetually have U3(z) ≡ 0, indicating that regardless of the strategic selection chosen by the government, it inherently embodies an ESS;
- (2)
- Under the premise that , and guided by principles of stability theorem, there prevail two equilibrium strategies, specifically z = 0 and z = 1, which fulfill the criterion that U3(z) = 0. Differentiating U3(z) yields
4.3. Analysis of Equilibrium Solution and Its Stability
5. Simulation Result and Analysis
5.1. Analysis of Simulation for Initial Strategy Modification
5.1.1. The Impact of Changes in Users’ Initial Strategy(x) on Tripartite Evolution Strategies
5.1.2. The Impact of Changes in App Providers’ Initial Strategy(y) on Tripartite Evolution Strategies
5.1.3. The Impact of Changes in the Government’s Initial Strategy(z) on Tripartite Evolution Strategies
5.1.4. Brief Summary of the Results
5.2. Analysis of Simulation for Parameter Modification
5.2.1. The Impact of Changes in R1 on Users’ Evolutionary Strategies
5.2.2. The Impact of Changes in C1 on Users’ Evolutionary Strategies
5.2.3. The Impact of Changes in C2 on App Providers’ Evolutionary Strategies
5.2.4. The Impact of Changes in W2 on App Providers’ Evolutionary Strategies
5.2.5. The Impact of Changes in C3 on the Government’s Evolutionary Strategies
6. Discussion
6.1. Results Analysis
6.2. Theoretical and Practical Significance
6.3. Limitation and Future Direction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soomro, Z.A.; Shah, M.H.; Ahmed, J. Information security management needs more holistic approach: A literature review. Int. J. Inf. Manag. 2016, 36, 215–225. [Google Scholar] [CrossRef]
- Kshetri, N. Big data׳ s impact on privacy, security and consumer welfare. Telecommun. Policy 2014, 38, 1134–1145. [Google Scholar] [CrossRef]
- Mamonov, S.; Benbunan-Fich, R. The impact of information security threat awareness on privacy-protective behaviors. Comput. Hum. Behav. 2018, 83, 32–44. [Google Scholar] [CrossRef]
- IBM Security. Cost of a Data Breach Report 2023 [EB/OL]. Available online: https://www.ibm.com/downloads/cas/E3G5JMBP (accessed on 24 July 2023).
- Baidoo-Anu, D.; Ansah, L.O. Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. J. AI 2023, 7, 52–62. [Google Scholar] [CrossRef]
- Fui-Hoon Nah, F.; Zheng, R.; Cai, J.; Siau, K.; Chen, L. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. J. Inf. Technol. Case Appl. Res. 2023, 25, 277–304. [Google Scholar] [CrossRef]
- Wu, X.; Duan, R.; Ni, J. Unveiling security, privacy, and ethical concerns of ChatGPT. J. Inf. Intell. 2024, 2, 102–115. [Google Scholar] [CrossRef]
- Musto, J. OpenAI, Microsoft Face Class-Action Suit over Internet Data Use for AI Models [EB/OL]. Available online: https://www.foxnews.com/tech/openai-microsoft-face-class-action-suit-internet-data-use-ai-models (accessed on 29 June 2023).
- Sun, Y.; Zhang, Y.F.; Wang, Y.; Zhang, S. Cooperative governance mechanisms for personal information security: An evolutionary game approach. Kybernetes, 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Samonas, S.; Dhillon, G.; Almusharraf, A. Stakeholder perceptions of information security policy: Analyzing personal constructs. Int. J. Inf. Manag. 2020, 50, 144–154. [Google Scholar] [CrossRef]
- Choi, J.P.; Jeon, D.S.; Kim, B.C. Privacy and personal data collection with information externalities. J. Public Econ. 2019, 173, 113–124. [Google Scholar] [CrossRef]
- Wang, J.; Shan, Z.; Gupta, M.; Rao, H.R. A longitudinal study of unauthorized access attempts on information systems: The role of opportunity contexts. MIS Q. 2019, 43, 601–622. [Google Scholar] [CrossRef]
- Alneyadi, S.; Sithirasenan, E.; Muthukkumarasamy, V. A survey on data leakage prevention systems. J. Netw. Comput. Appl. 2016, 62, 137–152. [Google Scholar] [CrossRef]
- Hauer, B. Data and information leakage prevention within the scope of information security. IEEE Access 2015, 3, 2554–2565. [Google Scholar] [CrossRef]
- Featherman, M.S.; Miyazaki, A.D.; Sprott, D.E. Reducing online privacy risk to facilitate e-service adoption: The influence of perceived ease of use and corporate credibility. J. Serv. Mark. 2010, 24, 219–229. [Google Scholar] [CrossRef]
- Guo, Z.; Cho, J.H.; Chen, R.; Sengupta, S.; Hong, M.; Mitra, T. Online social deception and its countermeasures: A survey. IEEE Access 2020, 9, 1770–1806. [Google Scholar] [CrossRef]
- Son, J.Y.; Kim, S.S. Internet users’ information privacy-protective responses: A taxonomy and a nomological model. MIS Q. 2008, 32, 503–529. [Google Scholar] [CrossRef]
- Miltgen, C.L.; Smith, H.J. Falsifying and withholding: Exploring individuals’ contextual privacy-related decision-making. Inf. Manag. 2019, 56, 696–717. [Google Scholar] [CrossRef]
- Wang, L.; Yan, J.; Lin, J.; Cui, W. Let the users tell the truth: Self-disclosure intention and self-disclosure honesty in mobile social networking. Int. J. Inf. Manag. 2017, 37, 1428–1440. [Google Scholar] [CrossRef]
- Mason, K.; Harris, L.C. Pitfalls in evaluating market orientation: An exploration of executives’ interpretations. Long Range Plan. 2005, 38, 373–391. [Google Scholar] [CrossRef]
- Lappeman, J.; Marlie, S.; Johnson, T.; Poggenpoel, S. Trust and digital privacy: Willingness to disclose personal information to banking chatbot services. J. Financ. Serv. Mark. 2023, 28, 337–357. [Google Scholar] [CrossRef]
- Degutis, M.; Urbonavičius, S.; Hollebeek, L.D.; Anselmsson, J. Consumer s’ willingness to disclose their personal data in e-commerce: A reciprocity-based social exchange perspective. J. Retail. Consum. Serv. 2023, 74, 103385. [Google Scholar] [CrossRef]
- Degirmenci, K. Mobile users’ information privacy concerns and the role of app permission requests. Int. J. Inf. Manag. 2020, 50, 261–272. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Min, Q.; Li, W. The effect of role conflict on self-disclosure in social network sites: An integrated perspective of boundary regulation and dual process model. Inf. Syst. J. 2019, 29, 279–316. [Google Scholar] [CrossRef]
- Min, J.; Kim, B. How are people enticed to disclose personal information despite privacy concerns in social network sites? The calculus between benefit and cost. J. Assoc. Inf. Sci. Technol. 2015, 66, 839–857. [Google Scholar] [CrossRef]
- Cho, J.Y.; Ko, D.; Lee, B.G. Strategic approach to privacy calculus of wearable device user regarding information disclosure and continuance intention. KSII Trans. Internet Inf. Syst. (TIIS) 2018, 12, 3356–3374. [Google Scholar]
- Smith, J.; Price, G.R. The logic of animal conflict. Nature 1973, 246, 15–18. [Google Scholar] [CrossRef]
- Nowak, M.A.; Sigmund, K. Evolutionary dynamics of biological games. Science 2004, 303, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, K.; Hauert, C.; Nowak, M.A. Reward and punishment. Proc. Natl. Acad. Sci. USA 2001, 98, 10757–10762. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.F., Jr. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.D.; Jonker, L.B. Evolutionary stable strategies and game dynamics. Math. Biosci. 1978, 40, 145–156. [Google Scholar] [CrossRef]
- Li, K.; Tian, L.; Li, W.; Luo, G.; Cai, Z. Incorporating social interaction into three-party game towards privacy protection in IoT. Comput. Netw. 2019, 150, 90–101. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Xiao, Y.; Lin, C. Consumer privacy protection with the growth of AI-empowered online shopping based on the evolutionary game model. Front. Public Health 2021, 9, 705777. [Google Scholar] [CrossRef]
- Binmore, K.G. Game Theory and the Social Contract: Just Playing; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Mengibaev, U.; Jia, X.; Ma, Y. The impact of interactive dependence on privacy protection behavior based on evolutionary game. Appl. Math. Comput. 2020, 379, 125231. [Google Scholar] [CrossRef]
- Peng, J.; Tu, G.; Liu, Y.; Zhang, H.; Leng, B. The integration role of governmental information disclosure platform: An evolutionary game analysis of corporate environmental monitoring data fraud. Kybernetes 2019, 49, 1347–1379. [Google Scholar] [CrossRef]
- Gao, X.; Shen, J.; He, W.; Sun, F.; Zhang, Z.; Guo, W.; Zhang, X.; Kong, Y. An evolutionary game analysis of governments’ decision-making behaviors and factors influencing watershed ecological compensation in China. J. Environ. Manag. 2019, 251, 109592. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Wang, S.; Gu, X.; Zhou, Z.; Zhao, Y.; Huo, W. Evolutionary game analysis on industrial pollution control of local government in China. J. Environ. Manag. 2021, 298, 113499. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chu, M.; Wen, X.; Wang, Y. Food safety risk communication between the food regulator and consumer in China: An evolutionary game perspective. Complexity 2021, 2021, 9933796. [Google Scholar] [CrossRef]
- Peng, X.; Wang, F.; Wang, J.; Qian, C. Research on food safety control based on evolutionary game method from the perspective of the food supply chain. Sustainability 2022, 14, 8122. [Google Scholar] [CrossRef]
- Yan, H.; Wei, H.; Wei, M. Exploring tourism recovery in the post-COVID-19 period: An evolutionary game theory approach. Sustainability 2021, 13, 9162. [Google Scholar] [CrossRef]
- Qingyun, P.; Mu, Z. Evolutionary game analysis of land income distribution in tourism development. Tour. Econ. 2021, 27, 670–687. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Sun, W.; Guo, J.; Bie, R.; Lin, K. Context sensing system analysis for privacy preservation based on game theory. Sensors 2017, 17, 339. [Google Scholar] [CrossRef]
- Kumari, V.; Chakravarthy, S. Cooperative privacy game: A novel strategy for preserving privacy in data publishing. Hum.-Centric Comput. Inf. Sci. 2016, 6, 12. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, C.; Li, X. Evolutionary analysis of the regulation of data abuse in digital platforms. Systems 2023, 11, 188. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Z.; Yang, J. An Evolutionary Game Analysis of Stakeholders’ Decision-Making Behavior in Medical Data Sharing. Mathematics 2023, 11, 2921. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, H.; Feng, M. An evolutionary game-theoretic approach for assessing privacy protection in mHealth systems. Int. J. Environ. Res. Public Health 2018, 15, 2196. [Google Scholar] [CrossRef]
- Liu, F.; Pan, L.; Yao, L.H. Evolutionary game based analysis for user privacy protection behaviors in social networks. In Proceedings of the 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), Guangzhou, China, 18–21 June 2018; pp. 274–279. [Google Scholar]
- Du, J.; Jiang, C.; Chen, K.C.; Ren, Y.; Poor, H.V. Community-structured evolutionary game for privacy protection in social networks. IEEE Trans. Inf. Forensics Secur. 2017, 13, 574–589. [Google Scholar] [CrossRef]
- Gao, S.; Ling, S.; Liu, W. The role of social media in promoting information disclosure on environmental incidents: An evolutionary game theory perspective. Sustainability 2018, 10, 4372. [Google Scholar] [CrossRef]
- Chorppath, A.K.; Alpcan, T. Trading privacy with incentives in mobile commerce: A game theoretic approach. Pervasive Mob. Comput. 2013, 9, 598–612. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Hong, Y. Evolutionary game—Theoretic approach for analyzing user privacy disclosure behavior in online health communities. Appl. Sci. 2022, 12, 6603. [Google Scholar] [CrossRef]
- Gu, T.; Zeng, P.; Wang, H. Research on Digital Information Privacy Behavior of Social Network Users Based on Evolutionary Game. Wirel. Commun. Mob. Comput. 2022, 2022, 1055817. [Google Scholar] [CrossRef]
- Guo, Y.; Zou, K.; Yang, M.; Liu, C. Tripartite Evolutionary Game of Multiparty Collaborative Supervision of Personal Information Security in App: Empirical Evidence From China. IEEE Access 2022, 10, 85429–85441. [Google Scholar] [CrossRef]
- Xie, Y.; Ma, Y.; Shen, J.; Li, A. A game theoretic approach toward privacy preserving for mobile learning data sharing. In Proceedings of the 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 14–16 January 2022; pp. 360–363. [Google Scholar]
- Kokolakis, S. Privacy attitudes and privacy behaviour: A review of current research on the privacy paradox phenomenon. Comput. Secur. 2017, 64, 122–134. [Google Scholar] [CrossRef]
- Laufer, R.S.; Wolfe, M. Privacy as a concept and a social issue, A multidimensional developmental theory. J. Soc. Issues 1977, 33, 22–42. [Google Scholar] [CrossRef]
- Awad, N.F.; Krishnan, M.S. The personalization privacy paradox, an empirical evaluation of information transparency and the willingness to be profiled online for personalization. MIS Q. 2006, 30, 13–28. [Google Scholar] [CrossRef]
- Klopfer, P.H.; Rubenstein, D.L. The concept privacy and its biological basis. J. Soc. Issues 1977, 33, 52–65. [Google Scholar] [CrossRef]
- Stern, J.; Holder, S. Regulatory governance: Criteria for assessing the performance of regulatory systems: An application to infrastructure industries in the develo** countries of Asia. Util. Policy 1999, 8, 33–50. [Google Scholar] [CrossRef]
- Xu, H.; Teo, H.H.; Tan, B.C.; Agarwal, R. The role of push-pull technology in privacy calculus: The case of location-based services. J. Manag. Inf. Syst. 2009, 26, 135–174. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, K.Z.; Chen, C.; Cheung, C.M.; Lee, M.K. What drives self-disclosure in mobile payment applications? The effect of privacy assurance approaches, network externality, and technology complementarity. Inf. Technol. People 2020, 33, 1174–1213. [Google Scholar] [CrossRef]
- Bignami, F. Privacy and law enforcement in the European union: The data retention directive. Chi. J. Int’l L. 2007, 8, 233. [Google Scholar]
- Arrieta-Ibarra, I.; Goff, L.; Jiménez-Hernández, D.; Lanier, J.; Weyl, E.G. Should we treat data as labor? Moving beyond “free”. AEA Pap. Proc. 2018, 108, 38–42. [Google Scholar] [CrossRef]
- Ichihashi, S. Competing data intermediaries. RAND J. Econ. 2021, 52, 515–537. [Google Scholar] [CrossRef]
- Bourreau, M.; Hofmann, J.; Krämer, J. Prominence-for-Data Schemes in Digital Platform Ecosystems: Economic Implications for Platform Bias and Consumer Data Collection. In Innovation Through Information Systems: Volume III: A Collection of Latest Research on Management Issues; Springer International Publishing: Berlin, Germany, 2021; pp. 512–516. [Google Scholar]
- Gilbert, R.J. Separation: A cure for abuse of platform dominance? Inf. Econ. Policy 2021, 54, 100876. [Google Scholar] [CrossRef]
- Liu, W.; Long, S.; Xie, D.; Liang, Y.; Wang, J. How to govern the big data discriminatory pricing behavior in the platform service supply chain? An examination with a three-party evolutionary game model. Int. J. Prod. Econ. 2021, 231, 107910. [Google Scholar] [CrossRef]
- Yang, M.; Feng, L.; Zhang, X. Research on the evolution of tripartite data protection strategy based on game theory. J. Algorithms Comput. Technol. 2023, 17, 17483026231157204. [Google Scholar] [CrossRef]
- Doney, P.M.; Cannon, J.P. An examination of the nature of trust in buyer–seller relationships. J. Mark. 1997, 61, 35–51. [Google Scholar]
- Dunbar, R.L.; Schwalbach, J. Corporate reputation and performance in Germany. Corp. Reput. Rev. 2000, 3, 115–123. [Google Scholar] [CrossRef]
- Roberts, P.W.; Dowling, G.R. Corporate reputation and sustained superior financial performance. Strateg. Manag. J. 2002, 23, 1077–1093. [Google Scholar] [CrossRef]
- Dowling, G.R. Communicating Corporate Reputation Through Stories. Calif. Manag. Rev. 2006, 49, 82–100. [Google Scholar] [CrossRef]
- Fang, X.; Chan, S.; Brzezinski, J.; Xu, S. Moderating Effects of Task Type on Wireless Technology Acceptance. J. Manag. Inf. Syst. 2005, 22, 123–157. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Tao, C. Evolutionary game of platform enterprises, government and consumers in the context of digital economy. J. Bus. Res. 2023, 167, 113858. [Google Scholar] [CrossRef]
- Gibson, J.L.; Caldeira, G.A. The legal cultures of Europe. Law Soc. Rev. 1996, 30, 55–85. [Google Scholar] [CrossRef]
- Culnan, M.J.; Bies, R.J. Consumer privacy: Balancing economic and justice considerations. J. Soc. Issues 2003, 59, 323–342. [Google Scholar] [CrossRef]
- Faure, M.G.; Goodwin, M.; Weber, F. Bucking the Kuznets curve: Designing effective environmental regulation in developing countries. Va. J. Int’l L. 2010, 51, 95–156. [Google Scholar]
- Shi, T.; Xiao, H.; Han, F.; Chen, L.; Shi, J. A regulatory game analysis of smart aging platforms considering privacy protection. Int. J. Environ. Res. Public Health 2022, 19, 5778. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D. On economic applications of evolutionary game theory. J. Evol. Econ. 1998, 8, 15–43. [Google Scholar] [CrossRef]
- Selten, R. A Note On Evolutionarily Stable Strategies in Asymmetric Animal Conflicts. J. Theor. Biol. 1980, 84, 93–101. [Google Scholar] [CrossRef]
- Friedman, D. Evolutionary games in economics. Econom. J. Econom. Soc. 1991, 59, 637–666. [Google Scholar] [CrossRef]
Parameters | Definitions |
---|---|
R1 | The benefit obtained by users from the functions and services provided by the App when they choose the “authorizing” strategy, where R1 > 0. |
C1 | The cost of privacy concern borne by users when they choose the “authorizing” strategy, and the App provider chooses the “compliance” strategy, where C1 > 0. |
ΔC1 | The additional cost of privacy concerns users need to bear when they choose the “authorizing” strategy and the App provider chooses the “non-compliance” strategy, where ΔC1 > 0. |
U1 | The benefit of government assurance felt by users when they choose the “authorizing” strategy, the App provider chooses the “compliance” strategy, and the government chooses the “strict supervision” strategy, where U1 > 0. |
ΔU1 | The additional benefit of government assurance felt by users when they choose the “authorizing” strategy, the App provider chooses the “non-compliance” strategy, and the government chooses the “strict supervision” strategy, where ΔU1 > 0. |
W1 | The negative impact on users due to the absence of government assurance when they choose the “authorizing” strategy, the App provider chooses the “compliance” strategy, and the government chooses the “loose supervision” strategy, where W1 > 0. |
ΔW1 | The additional negative impact on users due to the absence of government assurance when they choose the “authorizing” strategy, the App provider chooses the “non-compliance” strategy, and the government chooses the “loose supervision” strategy, where ΔW1 > 0. |
R2 | The informational value benefit gained by the App provider when they choose the “compliance” strategy and users choose the “authorizing” strategy, where R2 > 0. |
ΔR2 | The additional informational benefit gained by the App provider when they choose the “non-compliance” strategy and users choose the “authorizing” strategy, where ΔR2 > 0. |
C2 | The reputation loss incurred by the App provider when they choose a “non-compliance” strategy, where C2 > 0. |
ΔC2 | The additional reputation cost incurred by the App provider when they choose the “non-compliance” strategy and users choose the “authorizing” strategy, where ΔC2 > 0. |
W2 | The penalty loss suffered by the App provider when they choose the “non-compliance” strategy and the government chooses the “strict supervision” strategy, where W2 > 0. |
C3 | The auditing and monitoring costs incurred by the government when they choose a “strict supervision” strategy, where C3 > 0. |
U3 | The credibility and trust benefit gained by the government when they choose the “strict supervision” strategy, where U3 > 0. |
ΔU3 | The additional credibility benefit gained by the government due to timely maintenance of market order when they choose the “strict supervision” strategy and the App provider chooses the “compliance” strategy, where ΔU3 > 0. |
W3 | The loss of credibility suffered by the government due to the “loose supervision” strategy, where W3 > 0. |
ΔW3 | The additional credibility loss suffered by the government due to inadequate supervision when they choose the “loose supervision” strategy and the App provider chooses the “non-compliance” strategy, where ΔW3 > 0. |
V3 | The deepened credibility challenge faced by the government due to regulatory absence when they choose the “loose supervision” strategy, the App provider chooses the “non-compliance” strategy, and users choose the “authorizing” strategy, where V3 > 0. |
x | The probability of users choosing the “authorizing” strategy, where 0 ≤ x ≤ 1. |
y | The probability of the App provider choosing the “compliance” strategy, where 0 ≤ y ≤ 1. |
z | The probability of the government choosing a “strict supervision” strategy, where 0 ≤ z ≤ 1. |
Strategy Combinations | Users | App Providers | Government |
---|---|---|---|
Authorizing, Compliance, Strict supervision | R1 − C1 + U1 | R2 | U3 − C3 |
Authorizing, Compliance, Loose supervision | R1 − C1 − W1 | R2 | −W3 |
Authorizing, Non-compliance, Strict supervision | R1 − C1 − ΔC1 + U1 + ΔU1 | R2 + ΔR2 − C2 − ΔC2 − W2 | U3 + ΔU3 − C3 |
Authorizing, Non-compliance, Loose supervision | R1 − C1 − ΔC1 − W1 − ΔW1 | R2 + ΔR2 − C2 − ΔC2 | − W3 − ΔW3 − V3 |
Not authorizing, Compliance, Strict supervision | 0 | 0 | U3 − C3 |
Not authorizing, Compliance, Loose supervision | 0 | 0 | −W3 |
Not authorizing, Non-compliance, Strict supervision | 0 | −C2 − W2 | U3 + ΔU3 − C3 |
Not authorizing, Non-compliance, Loose supervision | 0 | −C2 | −W3 − ΔW3 |
Equilibrium Points | λ1 | λ2 | λ3 | Stability |
---|---|---|---|---|
E1(0,0,0) | R1 − C1 − ΔC1 − W1 − ΔW1 | C2 | U3 + ΔU3 + W3 + ΔW3 − C3 | Non-Stable |
E2(0,0,1) | R1 + U1 + ΔU1 − C1 − ΔC1 | C2 + W2 | C3 − U3 − W3 − ΔU3 − ΔW3 | Non-Stable |
E3(0,1,0) | R1 − C1 − W1 − ΔW1 | −C2 | U3 + W3 − C3 | Uncertain |
E4(0,1,1) | R1 + U1 − C1 | −C2 − W2 | C3 − U3 − W3 | Uncertain |
E5(1,0,0) | C1 + ΔC1 + W1 + ΔW1 − R1 | C2 + ΔC2 − ΔR2 | V3 + U3 + W3 + ΔU3 + ΔW3 − C3 | Uncertain |
E6(1,0,1) | C1 + ΔC1 − R1 − U1 − ΔU1 | C2 + W2 + ΔC2 − ΔR2 | C3 − V3 − U3 − W3 − ΔU3 − ΔW3 | Uncertain |
E7(1,1,0) | C1 + W1 + ΔW1 − R1 | ΔR2 − C2 − ΔC2 | U3 + W3 − C3 | Uncertain |
E8(1,1,1) | C1 − R1 − U1 | ΔR2 − W2 − C2 − ΔC2 | C3 − U3 − W3 | Uncertain |
Parameters | R1 | U1 | C1 | W1 | ΔC1 | ΔU1 | ΔW1 | R2 | C2 | W2 | ΔR2 | ΔC2 | C3 | U3 | W3 | V3 | ΔU3 | ΔW3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Numerical values | 1.2 | 0.2 | 0.6 | 0.3 | 0.3 | 0.1 | 0.2 | 1.2 | 0.6 | 0.6 | 1.2 | 0.3 | 0.9 | 0.6 | 0.6 | 0.1 | 0.3 | 0.3 |
Parameters | R1 | U1 | C1 | W1 | ΔC1 | ΔU1 | ΔW1 | R2 | C2 | W2 | ΔR2 | ΔC2 | C3 | U3 | W3 | V3 | ΔU3 | ΔW3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Numerical values | 1.2 | 0.1 | 0.6 | 0.2 | 0.3 | 0.05 | 0.1 | 1.2 | 0.9 | 0.6 | 1.2 | 0.3 | 10 | 4 | 5 | 0.1 | 1.2 | 1.5 |
Parameters | R1 | U1 | C1 | W1 | ΔC1 | ΔU1 | ΔW1 | R2 | C2 | W2 | ΔR2 | ΔC2 | C3 | U3 | W3 | V3 | ΔU3 | ΔW3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Numerical values | 1.2 | 0.2 | 0.6 | 0.3 | 0.3 | 0.1 | 0.2 | 1.2 | 0.6 | 0.6 | 1.2 | 0.3 | 0.9 | 0.6 | 0.6 | 0.1 | 0.3 | 0.3 |
Parameters | R1 | U1 | C1 | W1 | ΔC1 | ΔU1 | ΔW1 | R2 | C2 | W2 | ΔR2 | ΔC2 | C3 | U3 | W3 | V3 | ΔU3 | ΔW3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Numerical values | 1.2 | 0.3 | 1.0 | 0.8 | 0.1 | 0.1 | 0.1 | 1.2 | 0.3 | 0.3 | 1.2 | 0.1 | 0.6 | 0.3 | 0.8 | 0.1 | 0.1 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Peng, Z.; Wei, W. An Inquiry into the Evolutionary Game among Tripartite Entities and Strategy Selection within the Framework of Personal Information Authorization. Big Data Cogn. Comput. 2024, 8, 90. https://doi.org/10.3390/bdcc8080090
Tang J, Peng Z, Wei W. An Inquiry into the Evolutionary Game among Tripartite Entities and Strategy Selection within the Framework of Personal Information Authorization. Big Data and Cognitive Computing. 2024; 8(8):90. https://doi.org/10.3390/bdcc8080090
Chicago/Turabian StyleTang, Jie, Zhiyi Peng, and Wei Wei. 2024. "An Inquiry into the Evolutionary Game among Tripartite Entities and Strategy Selection within the Framework of Personal Information Authorization" Big Data and Cognitive Computing 8, no. 8: 90. https://doi.org/10.3390/bdcc8080090
APA StyleTang, J., Peng, Z., & Wei, W. (2024). An Inquiry into the Evolutionary Game among Tripartite Entities and Strategy Selection within the Framework of Personal Information Authorization. Big Data and Cognitive Computing, 8(8), 90. https://doi.org/10.3390/bdcc8080090