Eigenfunction Families and Solution Bounds for Multiplicatively Advanced Differential Equations
<p><b>Three Flat Functions:</b> Normalized plots of first-order MADE solutions that are flat at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, (1) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (dashed red), (2) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>4</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (solid blue), (3) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>6</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (dotted black line) all for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.3</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>(<b>Left</b>) Asymptotic extension <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>ϕ</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> from Equation (<a href="#FD73-axioms-09-00083" class="html-disp-formula">73</a>) for <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (solid red) together with a similarly constructed asymptotic extension for <math display="inline"><semantics> <mrow> <mo>−</mo> <msub> <mi>χ</mi> <mrow> <mo stretchy="false">(</mo> <mo>−</mo> <mo>∞</mo> <mo>,</mo> <mn>0</mn> <mo stretchy="false">]</mo> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <msub> <mi mathvariant="script">W</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>5</mn> <mo>/</mo> <mn>3</mn> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>/</mo> <msubsup> <mi>f</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> <mo>′</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> (dashed blue) both for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>. (<b>Right</b>) Plots of <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mi>t</mi> </msup> <mover accent="true"> <mi>K</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> where the functions <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>K</mi> <mo stretchy="false">˜</mo> </mover> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> are defined in Equation (<a href="#FD76-axioms-09-00083" class="html-disp-formula">76</a>) for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>. Failure of the asymptotic extension is found to be around <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, as compared to the computed value of <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mo>∗</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1.8</mn> </mrow> </semantics></math>. The upper-sum limits, from left to right, are <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mo>∗</mo> </msub> <mo>=</mo> <mn>6</mn> <mo>,</mo> <mn>10</mn> <mrow> <mo stretchy="false">(</mo> <mi>d</mi> <mi>o</mi> <mi>t</mi> <mi>t</mi> <mi>e</mi> <mi>d</mi> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
1.1. Solutions of MADEs as Eigenfunctions
1.2. Brief Overview
2. A Normalized Cosine Example and Extensions
2.1. Uniform Convergence
2.2. Application to PDE Example
2.3. A q-Advanced PDE Example
3. Solutions of MADEs and Natural Extensions
3.1. Flat Solutions of MADEs
3.2. A Non-Trivial Extension of a MADE Solution
3.3. Asymptotic Analysis of an Extension
“We look over the individual terms in the asymptotic series; …For every given value of …… we locate the smallest term. We then add all the preceding terms in the asymptotic series up to but not including the smallest term.”
- Case 1:
- There are two critical points with an intervening inflection point for and q sufficiently small. By the first derivative test, a local maximum occurs at while the desired local minimum then occurs at .
- Case 2:
- An edge case occurs, in which the two critical points coalesced to one point equaling the inflection point, . There is no local minimum for in this setting.
- Case 3:
- There are no critical points when either or q is too large, resulting in no local minimum for in this setting.
3.4. Special Case of the Derivative of an Airy Approxiamtion
3.5. An even Simpler Example of MADE Asymptotics
4. Convergence of MADEs to Classical Solutions
5. Convolutions, Correlations and Bounds
5.1. Distinction between Convolutions and Correlations
5.2. Auto-Correlation
5.3. Cross-Correlation
6. Expanded Table of Fourier Transforms
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ODE | Ordinary Differential Equation |
PDE | Partial Differential Equation |
MADE | Multiplicatvely Advanced Differential Equation |
Appendix A. Normalization in Terms of Theta Functions
Appendix B. Establishing the q-Airy Hypothesis for q > 1
Appendix C. Mollifier Argument for Airy PDE Initial Profile
Appendix D. Derivation of Inhomogeneous MADE
References
- Burden, R.L.; Fairs, D.J.; Burden, A.M. Numerical Analysis; 10E. Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Fox, L.; Mayers, D.F.; Ockendon, J.R.; Tayler, A.B. On a Functional Differential Equation. IMA J. Appl. Math. 1971, 8, 271–307. [Google Scholar] [CrossRef]
- Kato, T.; McLeod, J.B. The Functional-Differential Equation y′(x) = ay(λx) + by(x). Bull. Am. Math. Soc. 1971, 77, 891–937. [Google Scholar]
- Reed, M.; Simon, B. Functional Analysis I; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Dung, N.T. Asymptotic behavior of linear advanced differential equations. Acta Math. Sci. 2015, 35, 610–618. [Google Scholar] [CrossRef]
- Di Vizio, L. An ultrametric version of the Maillet-Malgrange theorem for nonlinear q-difference equations. Proc. Am. Math. Soc. 2008, 136, 2803–2814. [Google Scholar] [CrossRef] [Green Version]
- Di Vizio, L.; Hardouin, C. Descent for differential Galois theory of difference equations: Confluence and q-dependence. Pac. J. Math. 2012, 256, 79–104. [Google Scholar] [CrossRef] [Green Version]
- Di Vizio, L.; Zhang, C. On q-summation and confluence. Ann. Inst. Fourier (Grenoble) 2009, 59, 347–392. [Google Scholar] [CrossRef]
- Dreyfus, T. Building meromorphic solutions of q-difference equations using a Borel-Laplace summation. Int. Math. Res. Not. IMRN 2015, 15, 6562–6587. [Google Scholar] [CrossRef] [Green Version]
- Dreyfus, T.; Lastra, A.; Malek, S. On the multiple-scale analysis for some linear partial q-difference and differential equations with holomorphic coefficients. Adv. Differ. Equ. 2019, 2019, 326. [Google Scholar] [CrossRef]
- Lastra, A.; Malek, S. On q-Gevrey asymptotics for singularly perturbed q-difference-differential problems with an irreguular singularity. Abstr. Appl. Anal. 2012, 2012, 860716. [Google Scholar] [CrossRef]
- Lastra, A.; Malek, S. On parametric Gevrey asymptotics for singularly perturbed partial differential equations with delays. Abstr. Appl. Anal. 2013, 2013, 723040. [Google Scholar] [CrossRef] [Green Version]
- Lastra, A.; Malek, S. Parametric Gevrey asymptotics for some Cauchy problems in quasiperiodic function spaces. Abstr. Appl. Anal. 2014, 2014, 153169. [Google Scholar] [CrossRef] [Green Version]
- Lastra, A.; Malek, S. On parametric multilevel q-Gevrey asymptotics for some linear q-difference-differential equations. Adv. Differ. Equ. 2015, 2015, 344. [Google Scholar] [CrossRef] [Green Version]
- Lastra, A.; Malek, S. On multiscale Gevrey and q-Gevrey asymptotics for some linear q-difference differential initial value Cauchy problems. J. Differ. Equ. Appl. 2017, 23, 1397–1457. [Google Scholar] [CrossRef]
- Lastra, A.; Malek, S. On a q-Analog of Singularly Perturbed Problem of Irregular Type with Two Complex Time Variables. Mathematics 2019, 2019, 924. [Google Scholar] [CrossRef]
- Lastra, A.; Malek, S.; Sanz, J. On q-asymptotics for linear q-difference-differential equations with Fuchsian and irreguular singularities. J. Differ. Equ. 2012, 252, 5185–5216. [Google Scholar] [CrossRef]
- Lastra, A.; Malek, S.; Sanz, J. On q-asymptotics for q-difference-differential equations with Fuchsian and irregular singularities, Formal and analytic solutions of differential and difference equations. Pol. Acad. Sci. Inst. Math. 2012, 97, 73–90. [Google Scholar]
- Lastra, A.; Malek, S.; Sanz, J. On Gevrey solutions of threefold singular nonlinear partial differential equations. J. Differ. Equ. 2013, 255, 3205–3232. [Google Scholar] [CrossRef]
- Malek, S. On complex singularity analysis for linear partial q-difference-differential equations using nonlinear differential equations. J. Dyn. Control Syst. 2013, 19, 69–93. [Google Scholar] [CrossRef]
- Stéphane, M. On parametric Gevrey asymptotics for a q-analog of some linear initial value problem. Funkcial. Ekvac. 2017, 60, 21–63. [Google Scholar]
- Malek, S. On a Partial q-Analog of a Singularly Perturbed Problem with Fuchsian and Irregular Time Singularity. Abstr. Appl. Anal. 2020, 2020, 7985298. [Google Scholar] [CrossRef] [Green Version]
- Tahara, H. q-analogues of Laplace and Borel transforms by means of q-exponentials. Ann. Inst. Fourier Grenoble 2017, 67, 1865–1903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Analytic continuation of solutions of the pantograph equation by means of θ-modular forms. arXiv 2012, arXiv:1202.0423. [Google Scholar]
- Pravica, D.W.; Randriampiry, N.; Spurr, M.J. Reproducing kernel bounds for an advanced wavelet frame via the theta function. Appl. Comput. Harmon. Anal. 2012, 33, 79–108. [Google Scholar] [CrossRef] [Green Version]
- Bender, C.M.; Orszag, S.A. Asymptotic Analysis; Advanced Mathematical Methods for Scientists and Engineers; Springer: New York, NY, USA, 1999. [Google Scholar]
- Craig, W.; Goodman, J. Linear Dispersive Equations of Airy Type. J. Differ. Equ. 1990, 87, 38–61. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.; Simon, B. Fourier Analysis, Self-Adjointness II; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Pravica, D.W.; Randriampiry, N.; Spurr, M.J. Solutions of a class of multiplicatively advanced differential equations. C.R. Acad. Sci. Paris Ser. I 2018, 356, 776–817. [Google Scholar] [CrossRef]
- Pravica, D.; Spurr, M. Analytic Continuation into the Future. Discret. Contin. Dyn. Syst. 2003, 2003, 709–716. [Google Scholar]
- Stein, E.; Weiss, G. Introduction to Fouier Analysis on Euclidian Spaces; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
- Pravica, D.; Randriampiry, N.; Spurr, M. Applications of an advanced differential equation in the study of wavelets. Appl. Comput. Harmon. Anal. 2009, 27, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Pravica, D.; Randriampiry, N.; Spurr, M. On q-advanced spherical Bessel functions of the first kind and perturbations of the Haar wavelet. Appl. Comput. Harmon. Anal. 2018, 44, 350–413. [Google Scholar] [CrossRef]
Global Function | Property | Differential Equation | Decay Rate | Fourier Transf. (Modulo Coef.) | |
---|---|---|---|---|---|
Entire Schwartz | 1 | Gaussian | |||
1 | exponential | ||||
1 | undefined | ||||
1 | |||||
Ai(0) smooth | |||||
1 | undefined | ||||
Schwartz wavelet | 0 flat | ||||
Schwartz wavelet | 1 smooth | ||||
Schwartz wavelet | 0 smooth | ||||
Schwartz wavelet | 1 smooth | + | |||
Schwartz | |||||
Schwartz wavelet | 0 flat | ||||
Schwartz wavelet | 0 smooth | ||||
Schwartz wavelet | 0 smooth | ||||
Schwartz | smooth | dk |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pravica, D.W.; Randriampiry, N.; Spurr, M.J. Eigenfunction Families and Solution Bounds for Multiplicatively Advanced Differential Equations. Axioms 2020, 9, 83. https://doi.org/10.3390/axioms9030083
Pravica DW, Randriampiry N, Spurr MJ. Eigenfunction Families and Solution Bounds for Multiplicatively Advanced Differential Equations. Axioms. 2020; 9(3):83. https://doi.org/10.3390/axioms9030083
Chicago/Turabian StylePravica, David W., Njinasoa Randriampiry, and Michael J. Spurr. 2020. "Eigenfunction Families and Solution Bounds for Multiplicatively Advanced Differential Equations" Axioms 9, no. 3: 83. https://doi.org/10.3390/axioms9030083
APA StylePravica, D. W., Randriampiry, N., & Spurr, M. J. (2020). Eigenfunction Families and Solution Bounds for Multiplicatively Advanced Differential Equations. Axioms, 9(3), 83. https://doi.org/10.3390/axioms9030083