On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations
<p>Illustration of solution (<a href="#FD14-axioms-12-01106" class="html-disp-formula">14</a>) of Equation (<a href="#FD13-axioms-12-01106" class="html-disp-formula">13</a>). Solid line: corresponding solution of the linear wave equation. The parameters of the solution are <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msup> <mo form="prefix">cosh</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mo form="prefix">cosh</mo> <mo>(</mo> <mi>x</mi> <mo>−</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>3.5</mn> </mrow> </semantics></math>. Dashed line: solution (<a href="#FD14-axioms-12-01106" class="html-disp-formula">14</a>). <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Illustration of the wave–antiwave phenomenon connected to solution (<a href="#FD14-axioms-12-01106" class="html-disp-formula">14</a>) to the nonlinear partial differential Equation (<a href="#FD13-axioms-12-01106" class="html-disp-formula">13</a>). The parameters of the solution are <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msup> <mo form="prefix">cosh</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <msup> <mo form="prefix">cosh</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>−</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Illustration of the wave splitting phenomenon connected to solution (<a href="#FD14-axioms-12-01106" class="html-disp-formula">14</a>) to the nonlinear partial differential Equation (<a href="#FD13-axioms-12-01106" class="html-disp-formula">13</a>). The parameters of the solution are <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msup> <mo form="prefix">cosh</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <msup> <mo form="prefix">cosh</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>−</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Illustration of solution (<a href="#FD21-axioms-12-01106" class="html-disp-formula">21</a>) of Equation (<a href="#FD20-axioms-12-01106" class="html-disp-formula">20</a>). Solid line: corresponding solution of the linear wave equation. The parameters of the solution are <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msup> <mo form="prefix">cosh</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mo form="prefix">cosh</mo> <mo>(</mo> <mi>x</mi> <mo>−</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>3.5</mn> </mrow> </semantics></math>. Dashed line: solution (<a href="#FD21-axioms-12-01106" class="html-disp-formula">21</a>).</p> "> Figure 5
<p>Illustration of the soliton properties of the waves connected to solution (<a href="#FD21-axioms-12-01106" class="html-disp-formula">21</a>) of Equation (<a href="#FD20-axioms-12-01106" class="html-disp-formula">20</a>). The parameters of the solution are <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msup> <mo form="prefix">cosh</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>/</mo> <mo form="prefix">cosh</mo> <mo>(</mo> <mi>x</mi> <mo>−</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mo>−</mo> <mn>2.5</mn> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>3.5</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Illustration of the soliton properties of the waves connected to solution (<a href="#FD21-axioms-12-01106" class="html-disp-formula">21</a>) to Equation (<a href="#FD20-axioms-12-01106" class="html-disp-formula">20</a>). The parameters of the solution are <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>0.7</mn> <mo>/</mo> <msup> <mo form="prefix">cosh</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>=</mo> <mn>0.8</mn> <mo>/</mo> <mo form="prefix">cosh</mo> <mo>(</mo> <mi>x</mi> <mo>−</mo> <mi>c</mi> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>The bisoliton solution to Equation (<a href="#FD127-axioms-12-01106" class="html-disp-formula">127</a>). (<b>a</b>) The bisoliton solution of the Korteweg–de Vries equation. (<b>b</b>) The corresponding bisoliton solution of (<a href="#FD127-axioms-12-01106" class="html-disp-formula">127</a>). The parameters of the solution are <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>2.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Illustration of the soliton properties of the waves connected to the bisoliton solution of (<a href="#FD127-axioms-12-01106" class="html-disp-formula">127</a>). The parameters of the solution are <math display="inline"><semantics> <mrow> <mi>c</mi> <mo>=</mo> <mn>3.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>The soliton and the bisoliton solution to Equation (<a href="#FD135-axioms-12-01106" class="html-disp-formula">135</a>). (<b>a</b>) The soliton solution. (<b>b</b>) The corresponding bisoliton solution of (<a href="#FD135-axioms-12-01106" class="html-disp-formula">135</a>).</p> ">
Abstract
:1. Introduction
2. Transformations of Linear Equations and Exact Solutions to the Corresponding Nonlinear Equations
2.1. Transformations for the Wave Equation
2.2. Transformations for the Heat Equation
2.3. Transformation for the Laplace Equation
3. Transformations of Linear and Nonlinear Ordinary Differential Equations
4. Transformations of Nonlinear Partial Differential Equations
5. Concluding Remarks
Funding
Conflicts of Interest
Appendix A. Linear Differential Equations and Their Solutions Used in the Main Text
References
- Latora, V.; Nicosia, V.; Russo, G. Complex Networks. Principles, Methods, and Applications; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-10318-4. [Google Scholar]
- Vitanov, N.K. Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-41629-8. [Google Scholar]
- Treiber, M.; Kesting, A. Traffic Flow Dynamics: Data, Models, and Simulation; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-32460-4. [Google Scholar]
- Dimitrova, Z.I. Flows of Substances in Networks and Network Channels: Selected Results and Applications. Entropy 2022, 24, 1485. [Google Scholar] [CrossRef]
- Drazin, P.G. Nonlinear Systems; Cambridge University Press: Cambridge, UK, 1992; ISBN 0-521-40489-4. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0511755798. [Google Scholar]
- Verhulst, F. Nonlinear Differential Equations and Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-60934-6. [Google Scholar]
- Popivanov, P.; Slavova, A. Nonlinear Waves: An Introduction; World Scientific: Singapore, 2010; ISBN 9789813107953. [Google Scholar]
- Debnath, L. (Ed.) Nonlinear Waves; Cambridge University Press: Cambridge, UK, 1983; ISBN 0-521-25468-X. [Google Scholar]
- Kulikovskiii, A.; Sveshnikova, E. Nonlinear Waves in Elastic Media; CRC Press: Boca Raton, FL, USA, 2021; ISBN 0-8493-8643-8. [Google Scholar]
- Ma, Q. Advances in Numerical Simulation of Nonlinear Water Waves; World Scientific: Singapore, 2010; ISBN 9789812836502. [Google Scholar]
- Osborne, A.R. Nonlinear Topics in Ocean Physics; North-Holland: Amsterdam, The Netherlands, 1991; ISBN 9780444597823. [Google Scholar]
- Nazarov, V.; Radostin, A. Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids; Wiley: Chchester, UK, 2005; ISBN 9781118456088. [Google Scholar]
- Kim, C.-H. Nonlinear Waves and Offshore Structures; World Scientific: Singapore, 2008; ISBN 9789813102484. [Google Scholar]
- Fillipov, A.T. The Versatile Soliton; Springer: New York, NY, USA, 2010; ISBN 9780817649746. [Google Scholar]
- Akhmediev, N.; Ankiewicz, A. Dissipative Solitons; Springer: Berlin, Germany, 2005; ISBN 9783540233732. [Google Scholar]
- Davydov, A.S. Solitons in Molecular Systems; Springer: Dordrecht, The Netherlands, 2013; ISBN 9789401730259. [Google Scholar]
- Olver, P.J.; Sattiger, D.H. Solitons in Physics, Mathematics, and Nonlinear Optics; Springer: New York, NY, USA, 2012; ISBN 9781461390336. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0511623998. [Google Scholar]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Musslimani, Z.H. Inverse Scattering Transform for the Integrable Nonlocal Nonlinear Schrödinger Equation. Nonlinearity 2016, 29, 915. [Google Scholar] [CrossRef]
- Vitanov, N.K. Simple Equations Method (SEsM) and its Connection with the Inverse Scattering Transform Method. AIP Conf. Proc. 2021, 2321, 030035. [Google Scholar] [CrossRef]
- Fokas, A.S.; Ablowitz, M.J. The Inverse Scattering Transform for the Benjamin-Ono Equation—A Pivot to Multidimensional Problems. Stud. Appl. Math. 1983, 68, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y. Inverse Scattering Transformation for Generalized Nonlinear Schrödinger Equation. Appl. Math. Lett. 2019, 98, 306–313. [Google Scholar] [CrossRef]
- Osborne, A.R. The Inverse Scattering Transform: Tools for the Nonlinear Fourier Analysis and Filtering of Ocean Surface Waves. Chaos Solitons Fractals 1995, 1995 5, 2623–2637. [Google Scholar] [CrossRef]
- Osborne, A.R. Soliton Physics and the Periodic Inverse Scattering Transform. Physica D 1995, 86, 81–89. [Google Scholar] [CrossRef]
- Ji, J.L.; Zhu, Z.N. Soliton Solutions of an Integrable Nonlocal Modified Korteweg–de Vries Equation Through Inverse Scattering Transform. J. Math. Anal. Appl. 2017, 453, 973–984. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004; ISBN 0-521-83660-3. [Google Scholar]
- Gibbon, J.D.; Radmore, P.; Tabor, M.; Wood, D. The Painleve Property and Hirota’s Method. Stud. Appl. Math. 1985, 72, 39–63. [Google Scholar] [CrossRef]
- Gürses, M.; Pekcan, A. Nonlocal Modified KdV Equations and Their Soliton Solutions by Hirota Method. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 427–448. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, W.X. Complexiton Solutions to Soliton Equations by the Hirota Method. J. Math. Phys. 2017, 58, 101511. [Google Scholar] [CrossRef]
- Jia, T.T.; Chai, Y.Z.; Hao, H.Q. Multi-soliton Solutions and Breathers for the Generalized Coupled Nonlinear Hirota Equations via the Hirota Method. Superlattices Microstruct. 2017, 105, 172–182. [Google Scholar] [CrossRef]
- Ma, W.X. Soliton Solutions by Means of Hirota Bilinear Forms. Partial Differ. Equ. App. Math. 2022, 5, 100220. [Google Scholar] [CrossRef]
- Infeld, E.; Rowlands, G. Nonlinear Waves, Solitons and Chaos; Cambridge University Press: Cambridge, UK, 2000; ISBN 0-521-63212-9. [Google Scholar]
- Zhao, Z.-L.; He, L.-C.; Wazwaz, A.-M. Dynamics of Lump Chains for the BKP Equation Describing Propagation of Nonlinear Wave. Chin. Phys. B 2023, 32, 040501. [Google Scholar] [CrossRef]
- Ablowitz, M.J. Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons; Cambridge University Press: Cambridge, UK, 2011; ISBN 9781107012547. [Google Scholar]
- Calogero, F.; Degasperis, A. Spectral Transform and Solitons; North Holland: Amsterdam, The Netherlands, 1982; ISBN 0-444-86368-0. [Google Scholar]
- Osborne, A.R.; Bergamasco, L. The Solitons of Zabusky and Kruskal revisited: Perspective in Terms of the Periodic Spectral Transform. Physica D 1986, 18, 26–46. [Google Scholar] [CrossRef]
- Wadati, M.; Sogo, K. Gauge Transformations in Soliton theory. J. Phys. Soc. Jpn. 1983, 52, 394–398. [Google Scholar] [CrossRef]
- Buccoliero, D.; Desyatnikov, A.S. Quasi-periodic Transformations of Nonlocal Spatial Solitons. Opt. Express 2009, 17, 9608–9613. [Google Scholar] [CrossRef]
- Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. Transformation Groups for Soliton Equations: IV. A New Hierarchy of Soliton Equations of KP-type. Physica D 1982, 4, 343–365. [Google Scholar] [CrossRef]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1999; ISBN 0-471-35942-4. [Google Scholar]
- Zakharov, V.E.; Wabnitz, S. (Eds.) Optical Solitons: Theoretical Challenges and Industrial Perspectives; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9783662038079. [Google Scholar]
- Gibbon, J.D. A Survey of the Origins and Physical Importance of Soliton Equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1985, 315, 335–365. [Google Scholar]
- Ur Rehman, H.; Awan, A.U.; Habib, A.; Gamaoun, F.; El Din, M.T.; Galal, A.M. Solitary Wave Solutions for a Strain Wave Equation in a microstructured Solid. Results Phys. 2022, 39, 105755. [Google Scholar] [CrossRef]
- Newell, A.C. The General Structure of Integrable Evolution Equations. Proc. R. Soc. Lond. A Math. Phys. Sci. 1979, 365, 283–311. [Google Scholar]
- Yang, J. Nonlinear Waves in Integrable and Nonintegrable Systems; SIAM: Philadelphia, PA, USA, 2010; ISBN 9780898719680. [Google Scholar]
- Rogers, C.; Schief, W.K. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002; ISBN 9780521012881. [Google Scholar]
- Vitanov, N.K. Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact Solutions of Nonlinear Differential Equations. Entropy 2022, 24, 1653. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods. Entropy 2021, 23, 10. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Simple Equations Method and Non-linear Differential Equations with Non-polynomial Non-linearity. Entropy 2021, 23, 1624. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. On the Use of Composite Functions in the Simple Equations Method to Obtain Exact Solutions of Nonlinear Differential Equations. Computation 2021, 9, 104. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I. Modified Method of Simplest equation Applied to the Nonlinear Schrödinger Equation. J. Theor. Appl. Mech. 2018, 48, 59–69. [Google Scholar] [CrossRef]
- Vitanov, N.K. Modified Method of Simplest Equation: Powerful tool for Obtaining Exact and approximate Traveling-wave solutions of Nonlinear PDEs. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1176–1185. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Kantz, H. Modified Method of Simplest equation and its Application to Nonlinear PDEs. Appl. Math. Comput. 2010, 216, 2587–2595. [Google Scholar] [CrossRef]
- Vitanov, N.K. On Modified Method of Simplest Equation for Obtaining Exact and Approximate Solutions of Nonlinear PDEs: The role of the Simplest Equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4215–4231. [Google Scholar] [CrossRef]
- Vitanov, N.K.; Dimitrova, Z.I.; Vitanov, K.N. Modified Method of Simplest Equation for Obtaining Exact Analytical Solutions of Nonlinear Partial Differential Equations: Further development of the Methodology with Applications. Appl. Math. Comput. 2015, 269, 363–378. [Google Scholar] [CrossRef]
- Hopf, E. The Partial Differential Equation: ut+uux=ϵuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Cole, J.D. On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics. Q. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef]
- Wahlquist, H.D.; Estabrook, F.B. Bäcklund Transformation for Solutions of the Korteweg-de Vries Equation. Phys. Rev. Lett. 1973, 31, 1386–1390. [Google Scholar] [CrossRef]
- Dodd, R.K.; Bullough, R.K. Bäcklund Transformations for the Sine–Gordon Equations. Proc. R. Soc. Lond. A 1976, 351, 499–523. [Google Scholar]
- Satsuma, J.; Kaup, D.J. A Bäcklund Transformation for a Higher Order Korteweg-de Vries Equation. J. Phys. Soc. Jpn. 1977, 43, 692–697. [Google Scholar] [CrossRef]
- Hirota, R.; Satsuma, J. A Variety of Nonlinear Network Equations Generated from the Bäcklund Transformation for the Toda Lattice. Prog. Theor. Phys. Suppl. 1976, 59, 64–100. [Google Scholar] [CrossRef]
- Gao, X.Y.; Guo, Y.J.; Shan, W.R. Regarding the Shallow Water in an Ocean via a Whitham-Broer-Kaup-like System: Hetero-Bäcklund Transformations, Bilinear Forms and M Solitons. Chaos Solitons Fractals 2022, 162, 112486. [Google Scholar] [CrossRef]
- Hirota, R. A New Form of Bäcklund Transformations and its Relation to the Inverse Scattering Problem. Prog. Theor. Phys. 1974, 52, 1498–1512. [Google Scholar] [CrossRef]
- Lamb, G.L., Jr. Bäcklund Transformations for Certain Nonlinear Evolution Equations. J. Math. Phys. 1974, 15, 2157–2165. [Google Scholar] [CrossRef]
- Fan, E. Auto-Bäcklund Transformation and Similarity Reductions for General Variable Coefficient KdV Equations. Phys. Lett. A 2002, 294, 26–30. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Tian, B.; Chen, S.S.; Wei, C.C.; Chen, Y.Q. Bäcklund Transformations, Lax pair and Solutions of a Sharma-Tasso-Olver-Burgers Equation for the Nonlinear Dispersive Waves. Mod. Phys. Lett. B 2021, 35, 2150421. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Q.P.; Mao, H. The Modified Camassa–Holm eEquation: Bäcklund Transformation and Nonlinear Superposition Formula. J. Phys. A: Math. Theor. 2020, 53, 294003. [Google Scholar] [CrossRef]
- Gao, X.Y.; Guo, Y.J.; Shan, W.R. Bilinear Forms through the Binary Bell Polynomials, N Solitons and Bäcklund Transformations of the Boussinesq– Burgers System for the Shallow Water Waves in a Lake or Near an Ocean Beach. Commun. Theor. Phys. 2020, 72, 095002. [Google Scholar] [CrossRef]
- Wang, K.J. Bäcklund Transformation and Diverse Exact Explicit Solutions of the Fractal Combined Kdv–mkdv Equation. Fractals 2022, 30, 2250189. [Google Scholar] [CrossRef]
- Guo, B.; Ling, L.; Liu, Q.P. Nonlinear Schrödinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions. Phys. Rev. E 2012, 85, 026607. [Google Scholar] [CrossRef]
- Xu, S.; He, J.; Wang, L. The Darboux Transformation of the Derivative Nonlinear Schrödinger Equation. J. Phys. A Math. Theor. 2011, 44, 305203. [Google Scholar] [CrossRef]
- Gu, C.; Hu, H.; Zhou, Z. Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry; Springer: Dordrecht, The Netherlands, 2005; ISBN 1-4020-3087-8. [Google Scholar]
- Li, Y.; Zhang, J.E. Darboux Transformations of Classical Boussinesq system and its Multi-soliton Solutions. Phys. Lett. A 2001, 284, 253–258. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhang, Y.J. Darboux Transformations of Integrable Couplings and Applications. Rev. Math. Phys. 2018, 30, 1850003. [Google Scholar] [CrossRef]
- Aktosun, T.; Van der Mee, C. A Unified Approach to Darboux Transformations. Inverse Probl. 2009, 25, 105003. [Google Scholar] [CrossRef]
- Qiu, D.; He, J.; Zhang, Y.; Porsezian, K. The Darboux Transformation of the Kundu–Eckhaus Equation. Proc. R. Soc. A 2015, 471, 20150236. [Google Scholar] [CrossRef]
- Matveev, V.B. Darboux Transformation and Explicit solutions of the Kadomtcev-Petviaschvily equation, depending on Functional Parameters. Lett. Math. Phys. 1979, 3, 213–216. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.V. Exact Theory of Two-dimensional Self-Focusing and One-dimensional Self-modulation of Waves in Nonlinear Media. Sov. Phys. JETP 1972, 34, 62–69. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitanov, N.K. On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations. Axioms 2023, 12, 1106. https://doi.org/10.3390/axioms12121106
Vitanov NK. On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations. Axioms. 2023; 12(12):1106. https://doi.org/10.3390/axioms12121106
Chicago/Turabian StyleVitanov, Nikolay K. 2023. "On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations" Axioms 12, no. 12: 1106. https://doi.org/10.3390/axioms12121106
APA StyleVitanov, N. K. (2023). On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations. Axioms, 12(12), 1106. https://doi.org/10.3390/axioms12121106