Similarity Classes of the Longest-Edge Trisection of Triangles
<p>To each triangle with vertices <math display="inline"><semantics> <msub> <mi>z</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>z</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>z</mi> <mn>3</mn> </msub> </semantics></math> there is a similar triangle with vertices 0, 1, and <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>−</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>−</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </semantics></math>.</p> "> Figure 2
<p>Each triangle is drawn with its center of the base at the position corresponding to its Bookstein’s coordinates.</p> "> Figure 3
<p>Normalized region <math display="inline"><semantics> <mrow> <mo>Σ</mo> <mo>=</mo> <mfenced separators="" open="{" close="}"> <mi>z</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> <mspace width="4pt"/> <mo>/</mo> <mspace width="4pt"/> <mi>Im</mi> <mi>z</mi> <mo>></mo> <mn>0</mn> <mo>,</mo> <mspace width="4pt"/> <mi>Re</mi> <mi>z</mi> <mo>≤</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mspace width="4pt"/> <mrow> <mo>|</mo> <mi>z</mi> <mo>−</mo> <mn>1</mn> <mo>|</mo> </mrow> <mo>≤</mo> <mn>1</mn> </mfenced> </mrow> </semantics></math>.</p> "> Figure 4
<p>The importance of the distance <math display="inline"><semantics> <mi>δ</mi> </semantics></math> between two points with the same base line depends on the distance <span class="html-italic">h</span> to the real axis.</p> "> Figure 5
<p>Two points <span class="html-italic">z</span> and <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>+</mo> <mi>d</mi> <mi>z</mi> </mrow> </semantics></math>.</p> "> Figure 6
<p>(<b>a</b>) 3T-LE partition of a triangle with the left triangle <math display="inline"><semantics> <msub> <mo>Δ</mo> <mi>L</mi> </msub> </semantics></math> in gray. (<b>b</b>) Triangle <math display="inline"><semantics> <msub> <mo>Δ</mo> <mi>L</mi> </msub> </semantics></math> once normalized and <math display="inline"><semantics> <mrow> <msub> <mi>W</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Regions where the three edges of the triangles <math display="inline"><semantics> <msub> <mo>Δ</mo> <mi>L</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mo>Δ</mo> <mi>M</mi> </msub> </semantics></math> y <math display="inline"><semantics> <msub> <mo>Δ</mo> <mi>R</mi> </msub> </semantics></math> have the same metric relations. See also <a href="#axioms-12-00913-t001" class="html-table">Table 1</a>.</p> "> Figure 8
<p>From left to right, respectively, expressions for functions <math display="inline"><semantics> <msub> <mi>W</mi> <mi>L</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>W</mi> <mi>M</mi> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>W</mi> <mi>R</mi> </msub> </semantics></math> in each subregion.</p> "> Figure 9
<p>Deduction of function <math display="inline"><semantics> <msub> <mi>W</mi> <mi>R</mi> </msub> </semantics></math> for a point <span class="html-italic">z</span> belonging to the upper subregion given in <a href="#axioms-12-00913-f008" class="html-fig">Figure 8</a>.</p> "> Figure 10
<p>Orbit after ten iterations of the 3T-LE of the triangle marked with a red point.</p> "> Figure 11
<p>Hyperbolic circumferences <math display="inline"><semantics> <msub> <mi>C</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>C</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>C</mi> <mn>3</mn> </msub> </semantics></math> with radius <math display="inline"><semantics> <mrow> <mi>ln</mi> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math> and respective centers <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>ω</mi> <mn>2</mn> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>ω</mi> <mn>3</mn> </msub> </semantics></math>.</p> "> Figure 12
<p>Points <math display="inline"><semantics> <mrow> <mfrac> <mn>4</mn> <mn>9</mn> </mfrac> <mo>+</mo> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mn>18</mn> </mfrac> <mi>i</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfrac> <mn>2</mn> <mn>9</mn> </mfrac> <mo>+</mo> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mn>9</mn> </mfrac> <mi>i</mi> </mrow> </semantics></math> will have infinite orbits according to Proposition 6.</p> "> Figure 13
<p>Points <math display="inline"><semantics> <mrow> <mfrac> <mn>1</mn> <mn>9</mn> </mfrac> <mo>+</mo> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mn>9</mn> </mfrac> <mi>i</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mfrac> <mn>13</mn> <mn>27</mn> </mfrac> <mo>+</mo> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mn>27</mn> </mfrac> <mi>i</mi> </mrow> </semantics></math> will have infinite orbits according to Proposition 6.</p> ">
Abstract
:1. Introduction
2. Space of Triangular Shapes and the Hyperbolic Metric in the Space of Triangular Shapes
2.1. Normalized Triangle Region or Space of Triangular Shapes
2.2. Introduction to the Hyperbolic Metric in the Space of Triangular Shapes
2.3. Poincare Model the the Hyperbolic Plane
3. Complex Functions Associated with the 3T-LE in the Space of Triangular Shapes
4. Discrete Dynamic of the 3T-LE Partition in the Space of Triangles
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bova, S.W.; Carey, G.F. Mesh generation/refinement using fractal concepts and iterated function systems. Internat. J. Numer. Meth. Engrg. 1992, 33, 287–305. [Google Scholar] [CrossRef]
- Carey, G.F. Computational Grids: Generation, Refinement and Solution Strategies; Taylor and Francis: Washington, DC, USA, 1997. [Google Scholar]
- Brandts, J.; Korotov, S.; Křížek, M. On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 2008, 55, 2227–2233. [Google Scholar] [CrossRef]
- Rivara, M.C. Mesh refinement based on the generalized bisection of simplices. SIAM J. Numer. Anal. 1984, 21, 604–613. [Google Scholar] [CrossRef]
- Rivara, M.C.; Iribarren, G. The 4-triangles longest-side partition of triangles and linear refinement algorithms. Math. Compt. 1996, 65, 1485–1502. [Google Scholar] [CrossRef]
- Stynes, M. On faster convergence of the bisection method for certain triangles. Math. Comp. 1979, 33, 717–721. [Google Scholar] [CrossRef]
- Rosenberg, I.G.; Stenger, F. A lower bound on the angles of triangles constructed by bisecting the longest side. Math. Comp. 1975, 29, 390–395. [Google Scholar] [CrossRef]
- Korotov, S.; Plaza, Á.; Suárez, J.P. Longest-edge n-section algorithms: Properties and open problems. J. Comput. Appl. Math. 2016, 293, 139–146. [Google Scholar] [CrossRef]
- Adler, A. On the bisection method for triangles. Math. Comp. 1983, 40, 571–574. [Google Scholar] [CrossRef]
- Perdomo, F.; Plaza, Á. Properties of the longest-edge bisection of triangles. Cent. Eur. J. Math. 2014, 12, 1796–1810. [Google Scholar]
- Bookstein, F.L. The Measurement of Biological Shape and Shape Change; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Small, C.G. The Statistical Theory of Shape; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Anderson, J.W. Hyperbolic Geometry; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Bonahon, F. Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots; American Mathematical Society: Princeton, NJ, USA, 2009. [Google Scholar]
- Cannon, J.W.; Floyd, W.J.; Kenyon, R.; Parry, W.R. Hyperbolic Geometry. In Flavors of Geometry; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Perdomo, F.; Plaza, Á. Proving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic metric. Appl. Math. Comp. 2013, 221, 424–432. [Google Scholar] [CrossRef]
- Aigner, M.; Ziegler, G.M. Proofs from the Book; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
I | , , |
II | |
III | |
IV | , |
V | |
VI | |
VII |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdomo, F.; Plaza, Á. Similarity Classes of the Longest-Edge Trisection of Triangles. Axioms 2023, 12, 913. https://doi.org/10.3390/axioms12100913
Perdomo F, Plaza Á. Similarity Classes of the Longest-Edge Trisection of Triangles. Axioms. 2023; 12(10):913. https://doi.org/10.3390/axioms12100913
Chicago/Turabian StylePerdomo, Francisco, and Ángel Plaza. 2023. "Similarity Classes of the Longest-Edge Trisection of Triangles" Axioms 12, no. 10: 913. https://doi.org/10.3390/axioms12100913
APA StylePerdomo, F., & Plaza, Á. (2023). Similarity Classes of the Longest-Edge Trisection of Triangles. Axioms, 12(10), 913. https://doi.org/10.3390/axioms12100913