A Weighted Cosine-G Family of Distributions: Properties and Illustration Using Time-to-Event Data
<p>The plots of <math display="inline"><semantics> <mrow> <mi>f</mi> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>;</mo> <mi mathvariant="sans-serif-bold-italic">η</mi> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>h</mi> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>;</mo> <mi mathvariant="sans-serif-bold-italic">η</mi> </mfenced> </mrow> </semantics></math> of the WC-Weibull model for different values of <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <math display="inline"><semantics> <mi>γ</mi> </semantics></math>.</p> "> Figure 2
<p>The simulation results (visual illustration) of the WC-Weibull distribution for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>1.4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>The simulation results (visual illustration) of the WC-Weibull distribution for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1.2</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>The simulation results (visual illustration) of the WC-Weibull distribution for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>1.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>The kernel density (<b>a</b>), histogram (<b>b</b>), box plot (<b>c</b>), and violin plot (<b>d</b>) of Data 1.</p> "> Figure 6
<p>The kernel density (<b>a</b>), histogram (<b>b</b>), box plot (<b>c</b>), and violin plot (<b>d</b>) of Data 2.</p> "> Figure 7
<p>The kernel density (<b>a</b>), histogram (<b>b</b>), box plot (<b>c</b>), and violin plot (<b>d</b>) of Data 3.</p> "> Figure 8
<p>The plots for the (<b>a</b>) log-likelihood profile of <math display="inline"><semantics> <msub> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </msub> </semantics></math> and (<b>b</b>) log-likelihood profile of <math display="inline"><semantics> <msub> <mover accent="true"> <mi>γ</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </msub> </semantics></math> of the WC-Weibull distribution for Data 1.</p> "> Figure 9
<p>The plots for the fitted PDF of (<b>a</b>) WC-Weibull distribution, (<b>b</b>) Weibull distribution, (<b>c</b>) NEE-Weibull distribution, and (<b>d</b>) NAC-Weibull distribution for Data 1.</p> "> Figure 10
<p>The plots for the (<b>a</b>) fitted CDF and (<b>b</b>) fitted SF of the WC-Weibull and rival models for Data 1.</p> "> Figure 11
<p>The plots for the (<b>a</b>) log-likelihood profile of <math display="inline"><semantics> <msub> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </msub> </semantics></math> and (<b>b</b>) log-likelihood profile of <math display="inline"><semantics> <msub> <mover accent="true"> <mi>γ</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </msub> </semantics></math> of the WC-Weibull distribution for Data 2.</p> "> Figure 12
<p>The plots for the fitted PDF of (<b>a</b>) WC-Weibull distribution, (<b>b</b>) Weibull distribution, (<b>c</b>) NEE-Weibull distribution, and (<b>d</b>) NAC-Weibull distribution for Data 2.</p> "> Figure 13
<p>The plots for the (<b>a</b>) fitted CDF and (<b>b</b>) fitted SF of the WC-Weibull and rival models for Data 2.</p> "> Figure 14
<p>The plots for the (<b>a</b>) log-likelihood profile of <math display="inline"><semantics> <msub> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </msub> </semantics></math> and (<b>b</b>) log-likelihood profile of <math display="inline"><semantics> <msub> <mover accent="true"> <mi>γ</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>M</mi> <mi>L</mi> <mi>E</mi> </mrow> </msub> </semantics></math> of the WC-Weibull distribution for Data 3.</p> "> Figure 15
<p>The plots for the fitted PDF of (<b>a</b>) WC-Weibull distribution, (<b>b</b>) Weibull distribution, (<b>c</b>) NEE-Weibull distribution, and (<b>d</b>) NAC-Weibull distribution for Data 3.</p> "> Figure 16
<p>The plots for the (<b>a</b>) fitted CDF and (<b>b</b>) fitted SF of the WC-Weibull and rival models for Data 3.</p> ">
Abstract
:1. Introduction
2. The WC-Weibull Distribution
3. Distributional Properties
3.1. The Quantile Function
3.2. The Median and Quartile Measures
3.3. The Moment
4. Estimation and Simulation
4.1. Estimation
4.2. Simulation
- values of and became closer to the true values.
- the MSE of and decreased to zero.
- the bias of and decayed to zero.
5. Applications to Medical Data Sets
5.1. Description of the Data Sets
- Kernel density, which provides a smooth curve that represents the distribution of the data, allowing for insights into its shape, central tendency, and variability.
- Histogram, which is a basic graphical representation of the distribution of a variable. It divides the range of values into intervals, or bins, and displays the frequency or density of data points falling within each bin.
- Box plot, which provides a concise summary of the distribution of a variable. It displays key statistical measures, including the median, quartiles, and potential outliers.
- Violin plot, which combines the features of a box plot and a kernel density plot. It presents a mirrored density plot on each side of a central box plot, providing insights into both the summary statistics and the distributional shape of the data.
5.2. The Rival Distributions
5.3. The Decisive Tools
- Anderson Darling (AD) test, having the mathematical formula
- Cramer-Von-Messes (CM) test, computed as
- Kolmogorov-Smirnov (KS) test, obtained as
5.4. Analysis of First Real Data Set
5.5. Analysis of Second Real Data Set
5.6. Analysis of Third Real Data Set
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Almarashi, A.M.; Algarni, A.; Nassar, M. On estimation procedures of stress-strength reliability for Weibull distribution with application. PLoS ONE 2020, 15, e0237997. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Khosa, S.K.; Ahmad, Z.; Aslam, M.; Afify, A.Z. Type-I heavy tailed family with applications in medicine, engineering and insurance. PLoS ONE 2020, 15, e0237462. [Google Scholar] [CrossRef] [PubMed]
- Al-Babtain, A.A.; Kumar, D.; Gemeay, A.M.; Dey, S.; Afify, A.Z. Modeling engineering data using extended power-Lindley distribution: Properties and estimation methods. J. King Saud Univ.-Sci. 2021, 33, 101582. [Google Scholar] [CrossRef]
- Gómez, Y.M.; Gallardo, D.I.; Bourguignon, M.; Bertolli, E.; Calsavara, V.F. A general class of promotion time cure rate models with a new biological interpretation. Lifetime Data Anal. 2023, 29, 66–86. [Google Scholar] [CrossRef] [PubMed]
- Gamage, P.W.W.; McMahan, C.S.; Wang, L. A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model. Lifetime Data Anal. 2023, 29, 188–212. [Google Scholar] [CrossRef]
- Alghamdi, S.M.; Shrahili, M.; Hassan, A.S.; Gemeay, A.M.; Elbatal, I.; Elgarhy, M. Statistical Inference of the Half Logistic Modified Kies Exponential Model with Modeling to Engineering Data. Symmetry 2023, 15, 586. [Google Scholar] [CrossRef]
- Alsadat, N.; Ahmad, A.; Jallal, M.; Gemeay, A.M.; Meraou, M.A.; Hussam, E.; Elmetwally, E.M.; Hossain, M.M. The novel Kumaraswamy power Frechet distribution with data analysis related to diverse scientific areas. Alex. Eng. J. 2023, 70, 651–664. [Google Scholar] [CrossRef]
- Tashkandy, Y.A.; Nagy, M.; Akbar, M.; Mahmood, Z.; Gemeay, A.M.; Hossain, M.M.; Muse, A.H. The Exponentiated Cotangent Generalized Distributions: Characteristics and Applications Patients of Chemotherapy Treatments Data. IEEE Access 2023, 11, 35697–35709. [Google Scholar] [CrossRef]
- Chesneau, C.; Bakouch, H.S.; Hussain, T. A new class of probability distributions via cosine and sine functions with applications. Commun. Stat.-Simul. Comput. 2019, 48, 2287–2300. [Google Scholar] [CrossRef]
- Almalki, S.J.; Yuan, J. A new modified Weibull distribution. Reliab. Eng. Syst. Saf. 2013, 111, 164–170. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, U.; Singh, S.K. A new distribution using sine function-its application to bladder cancer patients data. J. Stat. Appl. Probab. 2015, 4, 417. [Google Scholar]
- Mahmood, Z.; Chesneau, C.; Tahir, M.H. A new sine-G family of distributions: Properties and applications. Bull. Comput. Appl. Math. 2019, 7, 53–81. [Google Scholar]
- Ampadu, C.B. The hyperbolic Tan-X family of distributions: Properties, application and characterization. J. Stat. Model. Theory Appl. 2021, 2, 1–13. [Google Scholar]
- Norton, E.C. The inverse hyperbolic sine transformation and retransformed marginal effects. Stata J. 2022, 22, 702–712. [Google Scholar] [CrossRef]
- Kormos, M.; Vörös, D.; Zaránd, G. Finite-temperature dynamics in gapped one-dimensional models in the sine-Gordon family. Phys. Rev. B 2022, 106, 205151. [Google Scholar] [CrossRef]
- Tomy, L.; Chesneau, C. Applications of the Sine Modified Lindley Distribution to Biomedical Data. Math. Comput. Appl. 2022, 27, 43. [Google Scholar] [CrossRef]
- Rajkumar, J.; Sakthivel, K.M. A New Method of Generating Marshall–Olkin Sine–G Family and Its Applications in Survival Analysis. Lobachevskii J. Math. 2022, 43, 463–472. [Google Scholar] [CrossRef]
- Nanga, S.; Nasiru, S.; Dioggban, J. Cosine Topp–Leone family of distributions: Properties and Regression. Res. Math. 2023, 10, 2208935. [Google Scholar] [CrossRef]
- Lee, E.T.; Wang, J. Statistical Methods for Survival Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 476. [Google Scholar]
- Kemaloglu, S.A.; Yilmaz, M. Transmuted two-parameter Lindley distribution. Commun. Stat. Theory Methods 2017, 46, 11866–11879. [Google Scholar] [CrossRef]
- Khosa, S.K.; Afify, A.Z.; Ahmad, Z.; Zichuan, M.; Hussain, S.; Iftikhar, A. A new extended-f family: Properties and applications to lifetime data. J. Math. 2020, 2020, 5498638. [Google Scholar] [CrossRef]
- Bekker, A.; Roux, J.J.J.; Mosteit, P.J. A generalization of the compound Rayleigh distribution: Using a Bayesian method on cancer survival times. Commun. Stat.-Theory Methods 2000, 29, 1419–1433. [Google Scholar] [CrossRef]
- Nwezza, E.E.; Ugwuowo, F.I. An extended normal distribution for reliability data analysis. J. Stat. Manag. Syst. 2022, 25, 369–392. [Google Scholar] [CrossRef]
Parameters | Measures | ||||||||
---|---|---|---|---|---|---|---|---|---|
CV | Skewness | Kurtosis | |||||||
0.25 | 0.5 | 39.8608 | 7667.83 | 6078.95 | 1.956 | 36.9047 | 74.8206 | ||
1.0 | 4.82182 | 39.8608 | 480.029 | 7667.83 | 16.6109 | 0.845251 | 3.55452 | 8.51061 | |
2.0 | 2.02246 | 4.82182 | 13.123 | 39.8608 | 0.731455 | 0.422876 | 0.434448 | 3.44383 | |
3.0 | 1.56719 | 2.65779 | 4.82182 | 9.27623 | 0.201703 | 0.286572 | 0.0722435 | 2.92154 | |
0.7 | 0.5 | 5.08429 | 124.75 | 7614.9 | 869357. | 98.9 | 1.956 | 36.9047 | 74.8206 |
1.0 | 1.72208 | 5.08429 | 21.8672 | 124.75 | 2.11874 | 0.845251 | 3.55452 | 8.51061 | |
2.0 | 1.20865 | 1.72208 | 2.80088 | 5.08429 | 0.261234 | 0.422876 | 0.434448 | 3.44383 | |
3.0 | 1.11191 | 1.33787 | 1.72208 | 2.3505 | 0.101533 | 0.286572 | 0.0722435 | 2.92154 | |
2.0 | 0.5 | 0.622826 | 1.87203 | 13.9982 | 195.768 | 1.48412 | 1.956 | 36.9047 | 74.8206 |
1.0 | 0.602727 | 0.622826 | 0.937557 | 1.87203 | 0.259545 | 0.845251 | 3.55452 | 8.51061 | |
2.0 | 0.715049 | 0.602727 | 0.579959 | 0.622826 | 0.0914319 | 0.422876 | 0.434448 | 3.44383 | |
3.0 | 0.783595 | 0.664447 | 0.602727 | 0.579765 | 0.0504257 | 0.286572 | 0.0722435 | 2.92154 | |
3.0 | 0.5 | 0.276811 | 0.369784 | 1.22892 | 7.63857 | 0.293159 | 1.956 | 36.9047 | 74.8206 |
1.0 | 0.401818 | 0.276811 | 0.277795 | 0.369784 | 0.115354 | 0.845251 | 3.55452 | 8.51061 | |
2.0 | 0.583835 | 0.401818 | 0.31569 | 0.276811 | 0.0609546 | 0.422876 | 0.434448 | 3.44383 | |
3.0 | 0.684533 | 0.507068 | 0.401818 | 0.337647 | 0.038482 | 0.286572 | 0.0722435 | 2.92154 |
w | Parameters | MLEs | MSEs | Biases |
---|---|---|---|---|
50 | 1.4296460 | 0.02405948 | 0.02964635 | |
1.0431000 | 0.03529194 | 0.04309999 | ||
100 | 1.4212070 | 0.01200113 | 0.02120715 | |
1.0130417 | 0.01491238 | 0.01304166 | ||
200 | 1.4111950 | 0.00610701 | 0.01119543 | |
1.0108342 | 0.00682204 | 0.01083417 | ||
300 | 1.4081410 | 0.00375586 | 0.00814085 | |
1.0101036 | 0.00518498 | 0.01010361 | ||
400 | 1.4051080 | 0.00297678 | 0.00510784 | |
1.0051150 | 0.00348963 | 0.00511498 | ||
500 | 1.4036400 | 0.00241264 | 0.00364035 | |
1.0023226 | 0.00277201 | 0.00232259 | ||
600 | 1.4024130 | 0.00192576 | 0.00241314 | |
1.0052975 | 0.00220275 | 0.00529752 | ||
700 | 1.4023780 | 0.00169136 | 0.00237846 | |
0.9983985 | 0.00209227 | −0.00160147 | ||
800 | 1.4015180 | 0.00132295 | 0.00151838 | |
1.0030077 | 0.00186708 | 0.00300772 | ||
900 | 1.4025340 | 0.00123326 | 0.00253402 | |
1.0011655 | 0.00173252 | 0.00116550 | ||
1000 | 1.4027230 | 0.00113616 | 0.00272319 | |
0.9995966 | 0.00133558 | −0.00040337 |
w | Parameters | MLEs | MSEs | Biases |
---|---|---|---|---|
50 | 0.9301292 | 0.010420608 | 0.030129186 | |
1.2587990 | 0.054114017 | 0.058799380 | ||
100 | 0.9190032 | 0.004904806 | 0.019003196 | |
1.2302100 | 0.023946464 | 0.030209555 | ||
200 | 0.9083318 | 0.002087803 | 0.008331841 | |
1.2147470 | 0.009057488 | 0.014747452 | ||
300 | 0.9067783 | 0.001287310 | 0.006778291 | |
1.2107980 | 0.006254901 | 0.010797619 | ||
400 | 0.9048156 | 0.000789564 | 0.004815557 | |
1.2079350 | 0.003876875 | 0.007935161 | ||
500 | 0.9015265 | 0.000492410 | 0.001526458 | |
1.2020270 | 0.002638221 | 0.002026584 | ||
600 | 0.9035450 | 0.000448842 | 0.003544961 | |
1.2037500 | 0.001965831 | 0.003750256 | ||
700 | 0.9027654 | 0.000369818 | 0.002765412 | |
1.2025920 | 0.001510795 | 0.002592192 | ||
800 | 0.9020800 | 0.000248739 | 0.002080045 | |
1.2008570 | 0.001217765 | 0.000856731 | ||
900 | 0.9017151 | 0.000199939 | 0.001715065 | |
1.2028740 | 0.001146012 | 0.002873864 | ||
1000 | 0.9026201 | 0.000202154 | 0.002620059 | |
1.2004670 | 0.000825658 | 0.000466553 |
w | Parameters | MLEs | MSEs | Biases |
---|---|---|---|---|
50 | 1.1307770 | 0.017107187 | 0.030776790 | |
0.8234098 | 0.019228798 | 0.002340984 | ||
100 | 1.1162240 | 0.007458450 | 0.016223649 | |
0.8115002 | 0.009817093 | 0.001150019 | ||
200 | 1.1089390 | 0.003489588 | 0.008939034 | |
0.8071731 | 0.004698275 | 0.000717306 | ||
300 | 1.1080430 | 0.002455605 | 0.008043088 | |
0.8028852 | 0.002875517 | 0.000288516 | ||
400 | 1.1057100 | 0.001785741 | 0.005709626 | |
0.8017098 | 0.002251494 | 0.000170975 | ||
500 | 1.1046660 | 0.001251863 | 0.004666320 | |
0.8029802 | 0.001741128 | 0.000298020 | ||
600 | 1.1028690 | 0.001034179 | 0.002868828 | |
0.8000814 | 0.001298472 | 0.000008142 | ||
700 | 1.1026830 | 0.000934220 | 0.002683266 | |
0.8024500 | 0.001270398 | 0.000245001 | ||
800 | 1.1021630 | 0.000702283 | 0.002163235 | |
0.8003387 | 0.001051193 | 0.000033872 | ||
900 | 1.1028780 | 0.000730588 | 0.002878359 | |
0.8012919 | 0.000900604 | 0.000129185 | ||
1000 | 1.1021200 | 0.000572035 | 0.002120053 | |
0.8009227 | 0.000773674 | 0.000009226 |
Dist. | ||||
---|---|---|---|---|
WC-Weibull | 0.85133 (0.05379) | 0.18984 (0.02808) | - | - |
Weibull | 1.05357 (0.06668) | 0.09165 (0.01832) | - | - |
NEE-Weibull | 1.20118 (0.20839) | 0.04084 (0.02911) | 0.92755 (0.52344) | - |
NAC-Weibull | 0.75268 (0.10561) | 0.17150 (0.07296) | - | 8.00968 (8.67012) |
Dist. | CM | AD | KS | p-Value | AIC | CAIC | BIC | HQIC |
---|---|---|---|---|---|---|---|---|
WC-Weibull | 0.0568 | 0.3645 | 0.0497 | 0.9089 | 826.3411 | 826.4371 | 832.0452 | 828.6587 |
Weibull | 0.1324 | 0.7925 | 0.0742 | 0.4798 | 832.1903 | 832.2863 | 837.8943 | 834.5078 |
NEE-Weibull | 0.0816 | 0.5073 | 0.0625 | 0.6993 | 831.1741 | 831.3676 | 837.7302 | 834.3505 |
NAC-Weibull | 0.1248 | 0.7378 | 0.0667 | 0.6185 | 833.1293 | 833.3229 | 841.6854 | 836.6057 |
Dist. | ||||
---|---|---|---|---|
WC-Weibull | 1.47357 (0.12474) | 0.46923 (0.06400) | - | - |
Weibull | 1.82376 (0.15865) | 0.28374 (0.054179) | - | - |
NEE-Weibull | 2.34318 (0.61212) | 0.07853 (0.11671) | 0.31447 (0.55515) | - |
NAC-Weibull | 1.22748 (0.20337) | 0.45063 (0.14358) | - | 13.81467 (15.71335) |
Dist. | CM | AD | KS | p-Value | AIC | CAIC | BIC | HQIC |
---|---|---|---|---|---|---|---|---|
WC-Weibull | 0.1008 | 0.6203 | 0.0931 | 0.5602 | 192.5671 | 192.7410 | 197.1205 | 194.3798 |
Weibull | 0.1647 | 0.9702 | 0.1051 | 0.4032 | 195.5797 | 195.7536 | 200.1331 | 197.3924 |
NEE-Weibull | 0.1191 | 0.6590 | 0.1069 | 0.3821 | 194.5930 | 194.9460 | 200.4230 | 196.3121 |
NAC-Weibull | 0.1565 | 0.9033 | 0.1018 | 0.4444 | 196.4686 | 196.8215 | 203.2986 | 199.1876 |
Dist. | ||||
---|---|---|---|---|
WC-Weibull | 0.81779 (0.08997) | 1.01124 (0.13157) | - | - |
Weibull | 1.05460 (0.15865) | 0.71613 (0.05417) | - | - |
NEE-Weibull | 1.26571 (0.20517) | 0.38501 (0.21702) | 0.62759 (0.73089) | - |
NAC-Weibull | 1.08096 (0.20755) | 0.33115 (0.19496) | - | 0.49814 (0.89409) |
Dist. | CM | AD | KS | p-Value | AIC | CAIC | BIC | HQIC |
---|---|---|---|---|---|---|---|---|
WC-Weibull | 0.0618 | 0.4282 | 0.0936 | 0.7909 | 119.7899 | 120.0756 | 123.4032 | 121.1369 |
Weibull | 0.0813 | 0.5439 | 0.1102 | 0.6055 | 122.2476 | 122.5334 | 125.8610 | 123.5947 |
NEE-Weibull | 0.0661 | 0.4523 | 0.0986 | 0.7215 | 121.6609 | 122.2462 | 127.0808 | 123.6814 |
NAC-Weibull | 0.0803 | 0.5377 | 0.1115 | 0.5913 | 122.2846 | 122.8700 | 127.7046 | 124.3052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odhah, O.H.; Alshanbari, H.M.; Ahmad, Z.; Rao, G.S. A Weighted Cosine-G Family of Distributions: Properties and Illustration Using Time-to-Event Data. Axioms 2023, 12, 849. https://doi.org/10.3390/axioms12090849
Odhah OH, Alshanbari HM, Ahmad Z, Rao GS. A Weighted Cosine-G Family of Distributions: Properties and Illustration Using Time-to-Event Data. Axioms. 2023; 12(9):849. https://doi.org/10.3390/axioms12090849
Chicago/Turabian StyleOdhah, Omalsad Hamood, Huda M. Alshanbari, Zubair Ahmad, and Gadde Srinivasa Rao. 2023. "A Weighted Cosine-G Family of Distributions: Properties and Illustration Using Time-to-Event Data" Axioms 12, no. 9: 849. https://doi.org/10.3390/axioms12090849
APA StyleOdhah, O. H., Alshanbari, H. M., Ahmad, Z., & Rao, G. S. (2023). A Weighted Cosine-G Family of Distributions: Properties and Illustration Using Time-to-Event Data. Axioms, 12(9), 849. https://doi.org/10.3390/axioms12090849