An Integrated Multicriteria Sorting Methodology with q-Rung Orthopair Fuzzy Sets for Evaluating the Impacts of Delays on Residential Construction Projects
<p>The proposed methodological framework.</p> "> Figure 2
<p>Sorting of construction project delay causes for HVCFs.</p> "> Figure 3
<p>Sorting of construction project delay causes for LVCFs.</p> "> Figure 4
<p>Sorting of construction project delay causes for MVCFs.</p> "> Figure 5
<p>Summary of sorting results of construction project delay causes for HVCFs, LVCFs, and MVCFs.</p> "> Figure 6
<p>Scatter graph of the assignment of delay causes at <math display="inline"><semantics> <mrow> <mi>t</mi> </mrow> </semantics></math> iterations.</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. -Rung Orthopair Fuzzy Sets
- (1)
- If , then ;
- (2)
- If then
- (3)
- If , thenIf , then ;If , then .
2.2. Weighted Influence Non-Linear Gauge Systems
- Step 1. Construct the direct strength–influence matrix.
- Step 2. Construct the scaled strength–influence matrix . Here, is scaled according to the following relation:
- Step 3. Determine the total strength–influence matrix , where is generated using the expression
- Step 4. Calculate the total impact and total receptivity as follows:
- Total impact represents the influence of the component on all other components in the system.
- Total receptivity represents the influence of all the other components in the system on the component .
- Total involvement represents the sum of all influences exerted on and received by the component .
- Cause and result role of the component indicated by a negative or a positive , respectively.
2.3. Level-Based Weight Assessment
- Step 1: Determine the most important criterion from the set of criteria Let the most important criterion, determined by the decision maker and denoted by the criterion , be the criterion in that is deemed most significant for the decision problem.
- Step 2: Group the criteria by levels of significance. Let the decision maker establish subsets of criteria in the following manner:
- Step 3: Within the formed subsets (levels) of the influence of the criteria, perform the comparison of criteria by their significance. Each criterion is assigned with an integer so that the most important criterion is assigned with . If is more significant than , , then ; otherwise, if is equivalent to , then . The maximum value on the scale for the comparison of criteria is defined by applying
- Step 4: Based on the defined maximum value of the scale for the comparison of criteria , define the elasticity coefficient (where presents the set of real numbers), which should meet the requirements .
- Step 5: Calculate the influence function of the criteria. The influence function is defined in the following way. For every , define the influence function of the criterion
- Step 6: Calculate the optimum values of the weight coefficients of criteria using the following:
2.4. FlowSort
- Step 1: Compute the preference function. Define , where is part of the set of alternatives . The preference function can be computed for any pair of The mapping calculates the preference strength of over in criterion by considering the deviation between and . The amount of deviation between and is expressed as follows:
- Step 2: Compute the preference degree. The global preference function of each pair of alternatives can be obtained through Equation (32),
- Step 3: Compute the leaving (), entering (), and net flow () using the following:
- Step 4: Assign the alternatives to categories. The assignment of alternative to category can be computed based on net flows expressed in Equation (36).
3. Methodology
3.1. Case Study
3.2. Application of the Proposed Approach in Evaluating the Impact of the Causes of Delays on Residential Construction Projects
- Phase 1: -ROF–WINGS–LBWA
- Step 1. Identify the causes of delays in residential construction projects and the three criteria.
- Step 2. Construct the direct strength–influence matrix of the criteria.
- Step 3. Represent the corresponding -ROF direct strength–influence matrix.
- Step 4. Transform the -ROF direct strength–influence matrix into a matrix with corresponding crisp scores.
- Step 5. Construct the scaled strength–influence matrix.
- Step 6. Determine the total strength–influence matrix and the total engagement rank.
- Step 7. Group criteria by the level of significance.
- Step 8. Compare the criteria by their significance.
- Step 9. Define the elasticity coefficient .
- Step 10. Determine the influence function of the criteria.
- Step 11. Calculate the weight coefficients of the criteria.
- Phase 2: -ROF–FlowSort
- Step 12. Construct the individual decision matrices in -ROFN.
- Step 13. Aggregate the individual decision matrices in -ROFN.
- Step 14. Define the reference profiles.
- Step 15. Compute the score function.
- Step 16. Compute the deviation function.
- Step 17. Calculate the preference function.
- Step 18. Define the preference degrees.
- Step 19. Obtain the outranking flow and sort the alternatives.
4. Sensitivity and Comparative Analyses
4.1. Sensitivity Analysis
4.2. Comparative Analysis
5. Discussion and Insights
6. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. List of Causes of Construction Delays
Code | Causes of Delays | References | ||||||
Ref. [91] | Ref. [34] | Ref. [35] | Ref. [28] | Ref. [26] | Ref. [36] | Ref. [27] | ||
A1 | Accidents on site because of poor site safety | X | X | |||||
A2 | Changes in orders and variations | X | X | X | X | X | X | X |
A3 | Confined site | X | ||||||
A4 | Conflicts and disputes | X | X | X | X | X | X | |
A5 | Delay in approval of drawings | X | X | X | ||||
A6 | Delay in the availability of design information | X | X | X | X | |||
A7 | Delay in material delivery | X | X | X | X | X | X | |
A8 | Delays in suppliers’ work | X | X | X | X | |||
A9 | Equipment allocation problems | X | X | X | ||||
A10 | Financial difficulties of the owner | X | X | X | X | X | ||
A11 | Fire (onsite) | X | ||||||
A12 | Fire (nearby area) | |||||||
A13 | Flood | X | X | |||||
A14 | Frequent change of subcontractors because of their inefficient work | X | X | |||||
A15 | Frequent equipment breakdown | X | X | X | ||||
A16 | Inadequacy of site inspection | X | ||||||
A17 | Inadequate contractor experience | X | X | X | X | X | ||
A18 | Inappropriate overall organizational structure linking all project teams | X | X | |||||
A19 | Insufficient amount of equipment | X | X | X | ||||
A20 | Labor absenteeism | X | X | |||||
A21 | Lack of communication between client and contractor | X | X | X | X | X | X | |
A22 | Long waiting time for approval of test samples of materials | X | X | |||||
A23 | Low-quality materials | X | ||||||
A24 | Material unavailability | X | X | X | X | X | X | |
A25 | Mistakes and discrepancies in design documents | X | X | |||||
A26 | Planning and scheduling problems | X | X | X | X | X | X | |
A27 | Poor site management and supervision | X | X | X | ||||
A28 | Price escalation in materials and labor | X | X | |||||
A29 | Rework due to errors during construction | X | ||||||
A30 | Shortage of site workers | X | X | X | X | X | ||
A31 | Shortage of technical personnel | X | X | X | X | X | ||
A32 | Slow decision making | X | X | X | X | |||
A33 | Slow permits by government agencies | X | X | |||||
A34 | Slow response | X | X | X | ||||
A35 | Suspensions | X | X | |||||
A36 | Unforeseen ground conditions | X | X | |||||
A37 | Unrealistic contract durations imposed by the client | X | X | |||||
A38 | Wind damage | X | X | |||||
Note: Gray-colored cells with an “X” signify the reference source of a given cause of delay. |
References
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]
- Fei, W.; Opoku, A.; Agyekum, K.; Oppon, J.A.; Ahmed, V.; Chen, C.; Lok, K.L. The critical role of the construction industry in achieving the sustainable development goals (SDGs): Delivering projects for the common good. Sustainability 2021, 13, 9112. [Google Scholar] [CrossRef]
- Giang, D.T.; Pheng, L.S. Role of construction in economic development: Review of key concepts in the past 40 years. Habitat Int. 2011, 35, 118–125. [Google Scholar] [CrossRef]
- Anaman, K.A.; Osei-Amponsah, C. Analysis of the causality links between the growth of the construction industry and the growth of the macro-economy in Ghana. Constr. Manag. Econ. 2007, 25, 951–961. [Google Scholar] [CrossRef]
- Philippine Statistics Authority. Statistics for Housing Policy; Philippine Statistics Authority: Quezon City, Philippines, 2022. Available online: https://psa.gov.ph/sites/default/files/6.6.3%20Statistics%20for%20Housing%20Policy.pdf (accessed on 15 February 2023).
- Philippine Statistics Authority. Construction Statistics from Approved Building Permits Philippines: 2018; Reference Number: 2019-290; Philippine Statistics Authority: Quezon City, Philippines, 2018.
- Philippine Statistics Authority. Construction Statistics from Approved Building Permits Philippines: 2019; Reference Number: 2020-338; Philippine Statistics Authority: Quezon City, Philippines, 2019.
- Philippine Statistics Authority. Construction Statistics from Approved Building Permits Philippines: 2020; Reference Number: 2021-352; Philippine Statistics Authority: Quezon City, Philippines, 2020.
- Philippine Statistics Authority. Construction Statistics from Approved Building Permits First Quarter 2021; Reference Number: 2021-222; Philippine Statistics Authority: Quezon City, Philippines, 2021.
- Philippine Statistics Authority. Construction Statistics from Approved Building Permits Second Quarter 2021; Reference Number: 2021-377; Philippine Statistics Authority: Quezon City, Philippines, 2021.
- Philippine Statistics Authority. Construction Statistics from Approved Building Permits Third Quarter 2021; Reference Number: 2021-513; Philippine Statistics Authority: Quezon City, Philippines, 2021.
- Philippine Statistics Authority. Construction Statistics from Approved Building Permits Fourth Quarter 2021; Reference Number: 2022-162; Philippine Statistics Authority: Quezon City, Philippines, 2021.
- Horta, I.M.; Camanho, A.S.; Johnes, J.; Johnes, G. Performance trends in the construction industry worldwide: An overview of the turn of the century. J. Product. Anal. 2013, 39, 89–99. [Google Scholar] [CrossRef]
- Westney, R.E.; Westney, R.E. Managing the Engineering and Construction of Small Projects: Practical Techniques for Planning, Estimating, Project Control, and Computer Applications; Dekker: New York, NY, USA, 1985. [Google Scholar]
- Griffith, A.; Headley, J.D. Developing an effective approach to the procurement and management of small building works within large client organizations. Constr. Manag. Econ. 1995, 13, 279–289. [Google Scholar] [CrossRef]
- Dunston, P.S.; Reed, A.G. Benefits of small projects team initiative. J. Constr. Eng. Manag. 2000, 126, 22–28. [Google Scholar] [CrossRef]
- Collins, W.; Parrish, K.; Gibson, G.E., Jr. Defining and understanding “small projects” in the industrial construction sector. Procedia Eng. 2017, 196, 315–322. [Google Scholar] [CrossRef]
- Liang, L. Small Project Benchmarking. Ph.D. Thesis, The University of Texas, Austin, TX, USA, 2005. [Google Scholar]
- Abdullah, M.R.; Azis, A.A.; Rahman, I.A. Potential effects on large mara construction projects due to construction delay. Int. J. Integr. Eng. 2009, 1, 53–62. [Google Scholar]
- Al Alawi, M. Delay in payment effects on productivity of small and medium construction companies in Oman: Exploration and ranking. Asian J. Civ. Eng. 2021, 22, 1347–1359. [Google Scholar] [CrossRef]
- Offei, I.; Kissi, E.; Nani, G. Factors affecting the capacity of small to medium enterprises (SME) building construction firms in Ghana. J. Constr. Dev. Ctries. 2019, 24, 49–63. [Google Scholar] [CrossRef]
- Rahim, F.A.M.; Yusoff, N.S.M.; Chen, W.; Zainon, N.; Yusoff, S.; Deraman, R. The challenge of labour shortage for sustainable construction. Plan. Malays. J. 2016, 14, 77–88. [Google Scholar]
- Alaghbari, W.; Al-Sakkaf, A.A.; Sultan, B. Factors affecting construction labour productivity in Yemen. Int. J. Constr. Manag. 2019, 19, 79–91. [Google Scholar] [CrossRef]
- Juanzon, J.B.P.; Muhi, M.M. Significant factors to motivate small and medium enterprise (SME) construction firms in the Philippines to implement ISO9001: 2008. Procedia Eng. 2017, 171, 354–361. [Google Scholar] [CrossRef]
- Sampaio, P.; Saraiva, P.; Guimarães Rodrigues, A. ISO 9001 certification forecasting models. Int. J. Qual. Reliab. Manag. 2011, 28, 5–26. [Google Scholar] [CrossRef]
- Kumaraswamy, M.M.; Chan, D.W. Contributors to construction delays. Constr. Manag. Econ. 1998, 16, 17–29. [Google Scholar] [CrossRef]
- Ogunlana, S.O.; Promkuntong, K.; Jearkjirm, V. Construction delays in a fast-growing economy: Comparing Thailand with other economies. Int. J. Proj. Manag. 1996, 14, 37–45. [Google Scholar] [CrossRef]
- Hamzah, N.; Khoiry, M.A.; Arshad, I.; Tawil, N.M.; Ani, A.C. Cause of construction delay-Theoretical framework. Procedia Eng. 2011, 20, 490–495. [Google Scholar] [CrossRef]
- Trauner, T.J. Construction Delays: Understanding Them Clearly, Analyzing Them Correctly; Butterworth-Heinemann: Oxford, UK, 2009. [Google Scholar]
- Gebrehiwet, T.; Luo, H. Analysis of delay impact on construction project based on RII and correlation coefficient: Empirical study. Procedia Eng. 2017, 196, 366–374. [Google Scholar] [CrossRef]
- Arantes, A.; da Silva, P.F.; Ferreira, L.M.D. Delays in construction projects-causes and impacts. In Proceedings of the 2015 International Conference on Industrial Engineering and Systems Management (IESM), Seville, Spain, 21–23 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1105–1110. [Google Scholar]
- Tariq, J.; Gardezi, S.S.S. Study the delays and conflicts for construction projects and their mutual relationship: A review. Ain Shams Eng. J. 2022, 14, 101815. [Google Scholar] [CrossRef]
- Islam, M.S.; Trigunarsyah, B. Construction delays in developing countries: A review. J. Constr. Eng. Proj. Manag. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Assaf, S.A.; Al-Hejji, S. Causes of delay in large construction projects. Int. J. Proj. Manag. 2006, 24, 349–357. [Google Scholar] [CrossRef]
- Durdyev, S.; Hosseini, M.R. Causes of delays on construction projects: A comprehensive list. Int. J. Manag. Proj. Bus. 2020, 13, 20–46. [Google Scholar] [CrossRef]
- Megha, D.; Rajiv, B. A methodology for ranking of causes of delay for residential construction projects in Indian context. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 396–404. [Google Scholar]
- Zidane, Y.J.T.; Andersen, B. The top 10 universal delay factors in construction projects. Int. J. Manag. Proj. Bus. 2018, 11, 650–672. [Google Scholar] [CrossRef]
- Sanni-Anibire, M.O.; Mohamad Zin, R.; Olatunji, S.O. Causes of delay in the global construction industry: A meta analytical review. Int. J. Constr. Manag. 2022, 22, 1395–1407. [Google Scholar] [CrossRef]
- Selcuk, O.; Turkoglu, H.; Polat, G.; Hajdu, M. An integrative literature review on the causes of delays in construction projects: Evidence from developing countries. Int. J. Constr. Manag. 2022, 1–13. [Google Scholar] [CrossRef]
- Derakhshanfar, H.; Ochoa, J.J.; Kirytopoulos, K.; Mayer, W.; Tam, V.W. Construction delay risk taxonomy, associations and regional contexts: A systematic review and meta-analysis. Eng. Constr. Archit. Manag. 2019, 26, 2364–2388. [Google Scholar] [CrossRef]
- Anysz, H.; Buczkowski, B. The association analysis for risk evaluation of significant delay occurrence in the completion date of construction project. Int. J. Environ. Sci. Technol. 2019, 16, 5369–5374. [Google Scholar] [CrossRef]
- Mbala, M.; Aigbavboa, C.; Aliu, J. Causes of Delay in Various Construction Projects: A Literature Review. In AHFE 2018: Advances in Human Factors, Sustainable Urban Planning and Infrastructure; Advances in Intelligent Systems and Computing; Charytonowicz, J., Falcão, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 788. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Buniya, M.K. Identifying and assessing sustainable value management implementation activities in developing countries: The case of Egypt. Sustainability 2020, 12, 9143. [Google Scholar] [CrossRef]
- Aghimien, D.O.; Oke, A.E.; Aigbavboa, C.O. Barriers to the adoption of value management in developing countries. Eng. Constr. Archit. Manag. 2018, 25, 818–834. [Google Scholar] [CrossRef]
- Abd El-Karim, M.S.B.A.; Mosa El Nawawy, O.A.; Abdel-Alim, A.M. Identification and assessment of risk factors affecting construction projects. HBRC J. 2017, 13, 202–216. [Google Scholar] [CrossRef]
- Ocampo, L.; Tanaid, R.A.; Tiu, A.M.; Selerio, E., Jr.; Yamagishi, K. Classifying the degree of exposure of customers to COVID-19 in the restaurant industry: A novel intuitionistic fuzzy set extension of the TOPSIS-Sort. Appl. Soft Comput. 2021, 113, 107906. [Google Scholar] [CrossRef]
- Michnik, J. Weighted Influence Non-linear Gauge System (WINGS)–An analysis method for the systems of interrelated components. Eur. J. Oper. Res. 2013, 228, 536–544. [Google Scholar] [CrossRef]
- Žižović, M.; Pamucar, D. New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decis. Mak. Appl. Manag. Eng. 2019, 2, 126–137. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, K. Improving Agricultural Green Supply Chain Management by a Novel Integrated Fuzzy-Delphi and Grey-WINGS Model. Agriculture 2022, 12, 1512. [Google Scholar] [CrossRef]
- Tavana, M.; Nasr, A.K.; Mina, H.; Michnik, J. A private sustainable partner selection model for green public-private partnerships and regional economic development. Socio-Econ. Plan. Sci. 2022, 83, 101189. [Google Scholar] [CrossRef]
- Olorvida, R.C.; Bande, R.A.; Ngalot, D.; Lacaba, R.; Codilla, J.; Arcuino, L.A.; Egloso, N.; Aro, J.L.; Maturan, F.; Ocampo, L. Grey weighted influence non-linear gauge systems (WINGS) for evaluating consumption barriers of refurbished mobile phones for a circular economy. Clean. Responsible Consum. 2023, 8, 100091. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Pamucar, D.; Ecer, F.; Chatterjee, P. An integrated BWM-LBWA-CoCoSo framework for evaluation of healthcare sectors in Eastern Europe. Socio-Econ. Plan. Sci. 2021, 78, 101052. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D.; Mardani, A.; Alrasheedi, M. Assessment of renewable energy resources using new interval rough number extension of the level based weight assessment and combinative distance-based assessment. Renew. Energy 2021, 170, 1156–1177. [Google Scholar] [CrossRef]
- Korucuk, S.; Aytekin, A.; Ecer, F.; Pamucar, D.S.S.; Karamaşa, Ç. Assessment of ideal smart network strategies for logistics companies using an integrated picture fuzzy LBWA–CoCoSo framework. Manag. Decis. 2023, 61, 1434–1462. [Google Scholar] [CrossRef]
- Nemery, P.; Lamboray, C. lowort: A flow-based sorting method with limiting or central profiles. TOP 2008, 16, 90–113. [Google Scholar] [CrossRef]
- Alvarez, P.A.; Ishizaka, A.; Martinez, L. Multiple-criteria decision-making sorting methods: A survey. Expert Syst. Appl. 2021, 183, 115368. [Google Scholar] [CrossRef]
- Moheimani, A.; Sheikh, R.; Hosseini, S.M.H.; Sana, S.S. Assessing the agility of hospitals in disaster management: Application of interval type-2 fuzzy Flowsort inference system. Soft Comput. 2021, 25, 3955–3974. [Google Scholar] [CrossRef]
- De Andrade, C.T.A.; Gusmão, A.P.H.D.; Silva, W. World Class Manufacturing performance measurement using a maturity model and the FlowSort method. Int. J. Prod. Res. 2021, 59, 7374–7389. [Google Scholar] [CrossRef]
- Darko, A.P.; Liang, D. Modeling customer satisfaction through online reviews: A FlowSort group decision model under probabilistic linguistic settings. Expert Syst. Appl. 2022, 195, 116649. [Google Scholar] [CrossRef]
- Shafiei-Nikabadi, M.; Rahmanimanesh, M.; Shambayati, H. Mobile financial applications development using an integrated approach of the netnography, fuzzy QFD and fuzzy flowsort. Int. J. Bus. Inf. Syst. 2022, 40, 493–513. [Google Scholar]
- Campos, A.C.S.M.; Mareschal, B.; de Almeida, A.T. Fuzzy FlowSort: An integration of the FlowSort method and Fuzzy Set Theory for decision making on the basis of inaccurate quantitative data. Inf. Sci. 2015, 293, 115–124. [Google Scholar] [CrossRef]
- Fedia, R.D.; Hela, F.M. The intuitionistic fuzzy flowsort method for multicriteria group decision making. Int. J. Fuzzy Syst. Appl. 2022, 11, 1–21. [Google Scholar] [CrossRef]
- Remadi, F.D.; Frikha, H.M. An extension of the FLOWSORT method based on intuitionistic fuzzy set theory to solve Multicriteria Decision Making problems. RAIRO-Oper. Res. 2022, 56, 1491–1501. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016, 25, 1222–1230. [Google Scholar] [CrossRef]
- Peng, X.; Luo, Z. A review of q-rung orthopair fuzzy information: Bibliometrics and future directions. Artif. Intell. Rev. 2021, 54, 3361–3430. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Ai, Z.; Xu, Z.; Yager, R.R.; Ye, J. q-rung orthopair fuzzy integrals in the frame of continuous Archimedean t-norms and t-conorms and their application. IEEE Trans. Fuzzy Syst. 2020, 29, 996–1007. [Google Scholar] [CrossRef]
- Atanassov, K.T. Geometrical Interpretation of the Elements of the Intuitionistic Fuzzy Objects, Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 1989, Preprint IM-MFAIS-1-89. Int. J. Bioautom. 2016, 20, S27–S42. [Google Scholar]
- Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 57–61. [Google Scholar]
- Lin, M.; Chen, Y.; Chen, R. Bibliometric analysis on Pythagorean fuzzy sets during 2013–2020. Int. J. Intell. Comput. Cybern. 2021, 14, 104–121. [Google Scholar] [CrossRef]
- Xiao, F.; Ding, W. Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis. Appl. Soft Comput. 2019, 79, 254–267. [Google Scholar] [CrossRef]
- Ejegwa, P.A. Distance and similarity measures for Pythagorean fuzzy sets. Granul. Comput. 2020, 5, 225–238. [Google Scholar] [CrossRef]
- Liu, P.; Wang, P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 2018, 33, 259–280. [Google Scholar] [CrossRef]
- Peng, X.; Huang, H. Fuzzy decision making method based on CoCoSo with critic for financial risk evaluation. Technol. Econ. Dev. Econ. 2020, 26, 695–724. [Google Scholar] [CrossRef]
- Peng, X.; Huang, H.; Luo, Z. q-Rung orthopair fuzzy decision-making framework for integrating mobile edge caching scheme preferences. Int. J. Intell. Syst. 2021, 36, 2229–2266. [Google Scholar] [CrossRef]
- Jana, C.; Muhiuddin, G.; Pal, M. Some Dombi aggregation of Q-rung orthopair fuzzy numbers in multiple-attribute decision making. Int. J. Intell. Syst. 2019, 34, 3220–3240. [Google Scholar] [CrossRef]
- Wei, G.; Wei, C.; Wang, J.; Gao, H.; Wei, Y. Some q-rung orthopair fuzzy Maclaurin symmetric mean operators and their applications to potential evaluation of emerging technology commercialization. Int. J. Intell. Syst. 2019, 34, 50–81. [Google Scholar] [CrossRef]
- Banerjee, D.; Dutta, B.; Guha, D.; Martínez, L. SMAA-QUALIFLEX methodology to handle multicriteria decision-making problems based on q-rung fuzzy set with hierarchical structure of criteria using bipolar Choquet integral. Int. J. Intell. Syst. 2020, 35, 401–431. [Google Scholar] [CrossRef]
- Farhadinia, B.; Liao, H. Score-based multiple criteria decision making process by using p-rung orthopair fuzzy sets. Informatica 2021, 32, 709–739. [Google Scholar] [CrossRef]
- Rani, P.; Mishra, A.R. Multicriteria weighted aggregated sum product assessment framework for fuel technology selection using q-rung orthopair fuzzy sets. Sustain. Prod. Consum. 2020, 24, 90–104. [Google Scholar] [CrossRef]
- Michnik, J. The WINGS method with multiple networks and its application to innovation projects selection. Int. J. Appl. Manag. Sci. 2018, 10, 105–126. [Google Scholar] [CrossRef]
- Verheyden, T.; De Moor, L. Sorting mutual funds with respect to process-oriented social responsibility: A FLOWSORT application. Decis. Sci. Lett. 2014, 3, 551–562. [Google Scholar] [CrossRef]
- Tibay, E.; Quiñones, R.; Quiñones, H.; Selerio, E.; Evangelista, S.S.; Aro, J.L.; Maturan, F.; Atibing, N.M.; Yamagishi, K.; Ocampo, L. Optimal planning of university technology transfer measures with FDANP-F-FlowSort and an extended multiobjective PROMETHEE V. IEEE Access 2022, 10, 56629–56651. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P. Note—A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef]
- Darko, A.P.; Liang, D. Some q-rung orthopair fuzzy Hamacher aggregation operators and their application to multiple attribute group decision making with modified EDAS method. Eng. Appl. Artif. Intell. 2020, 87, 103259. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, R.; Zhou, Z.; Wang, J. Some q-rung orthopair fuzzy point weighted aggregation operators for multi-attribute decision making. Soft Comput. 2019, 23, 11627–11649. [Google Scholar] [CrossRef]
- Peng, X.; Dai, J.; Garg, H. Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int. J. Intell. Syst. 2018, 33, 2255–2282. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multicriteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wu, Y.W. Dynamic Relationship of Steel Prices between Two Different Markets: Taiwan and Mainland China. J. Mar. Sci. Technol. 2006, 14, 7. [Google Scholar] [CrossRef]
- Al-Momani, A.H. Construction delay: A quantitative analysis. Int. J. Proj. Manag. 2000, 18, 51–59. [Google Scholar] [CrossRef]
Authors | Score Functions |
---|---|
Peng et al. [76] | |
Jana et al. [77]; Wei et al. [78] | |
Banerjee et al. [79] | |
Farhadinia and Liao [80] | |
Rani and Mishra [81] |
PCAB License | Years of Experience | No. of Site Workers in the Firm | No. of Technical Personnel in the Firm | No. of Residential Projects | Average Contract Prices for Implemented Projects (Million Php) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Presence/ Category | Civil Engineers | Mechanical Engineers | Architects | Others | Urban Areas | Rural Areas | |||||
R1 | Yes | AA | 10 | 500 | >5 | 0 | 2 | >5 | 0 | 1 | 2.1–3 |
R2 | Yes | D | 25 | 35 | 5 | 0 | 0 | 2 | >10 | >10 | 3.1–5 |
R3 | No | - | 3 | 12 | 1 | 0 | 1 | 1 | 3 | 1 | 2.1–3 |
R4 | Yes | D | 5 | 30 | 3 | 0 | 0 | 0 | 4 | 0 | 1–1.5 |
R5 | Yes | AA | 40 | 150 | 5 | 1 | 0 | 2 | 1 | 0 | >5 |
R6 | Yes | AAA | 48 | 500 | >5 | 2 | 3 | >5 | >10 | >10 | >5 |
R7 | No | - | - | - | >5 | 0 | 0 | >5 | 4 | 7 | 3.1–5 |
R8 | Yes | D | 3 | 50 | 4 | 1 | 1 | 1 | >10 | 0 | >5 |
R9 | Yes | C | 2 | 21 | 2 | 0 | 1 | 1 | 9 | 6 | 1.6–2 |
R10 | No | - | 20 | 32 | 3 | 0 | 1 | 2 | 10 | >10 | 2.1–3 |
R11 | Yes | C | 5 | 80 | 2 | 0 | 1 | 0 | 1 | 0 | 3.1–5 |
R12 | Yes | AA | 50 | 200 | >5 | 3 | 3 | >5 | >10 | 0 | >5 |
R13 | No | - | 7 | 30 | 0 | 0 | 3 | 1 | >10 | 3 | 3.1–5 |
R14 | Yes | AA | 15 | 1200 | >5 | 0 | 0 | >5 | >10 | >10 | >5 |
R15 | Yes | D | 6 | 100 | >5 | 0 | 0 | 1 | 1 | 0 | 2.1–3 |
R16 | No | - | 5 | 30 | 2 | 0 | 1 | 1 | 6 | 0 | 2.1–3 |
R17 | Yes | A | 30 | 60 | 3 | 0 | 0 | 5 | 5 | 5 | 3.1–5 |
R18 | No | - | 1 | 20 | 2 | 0 | 0 | 0 | 2 | 0 | 2.1–3 |
Component Strength | Component Influence | ||||
---|---|---|---|---|---|
Score | Linguistic Evaluation | -ROFN | Score | Linguistic Evaluation | -ROFN |
1 | Certainly low relevance | (0.15, 0.9) | 0 | No influence | (0,0) |
2 | Very low relevance | (0.30, 0.85) | 1 | Certainly low influence | (0.15, 0.9) |
3 | Low relevance | (0.45, 0.65) | 2 | Very low influence | (0.30, 0.85) |
4 | Medium relevance | (0.50, 0.50) | 3 | Low influence | (0.45, 0.65) |
5 | High relevance | (0.75, 0.40) | 4 | Medium influence | (0.50, 0.50) |
6 | Very high relevance | (0.80, 0.25) | 5 | High influence | (0.75, 0.40) |
7 | Certainly high relevance | (0.95, 0.10) | 6 | Very high influence | (0.80, 0.25) |
7 | Certainly high influence | (0.95, 0.1) |
Time | Cost | Quality | |
---|---|---|---|
Time | (0.95, 0.10) | (0.95, 0.10) | (0.75, 0.40) |
Cost | (0.80, 0.25) | (0.8, 0.25) | (0.95, 0.10) |
Quality | (0.75, 0.4) | (0.8, 0.25) | (0.75, 0.40) |
Time | Cost | Quality | |
---|---|---|---|
Time | 0.9513 | 0.9513 | 0.7813 |
Cost | 0.8200 | 0.8200 | 0.9513 |
Quality | 0.7813 | 0.8200 | 0.7813 |
Time | Cost | Quality | |
---|---|---|---|
Time | 0.1242 | 0.1242 | 0.1020 |
Cost | 0.1071 | 0.1071 | 0.1242 |
Quality | 0.1020 | 0.1071 | 0.1020 |
Time | Cost | Quality | Total Engagement Rank | |
---|---|---|---|---|
Time | 0.1829 | 0.1837 | 0.1598 | 1 |
Cost | 0.1633 | 0.1642 | 0.1796 | 2 |
Quality | 0.1539 | 0.1597 | 0.1532 | 3 |
Score | Linguistic Evaluation | -ROFN |
---|---|---|
1 | Certainly low significance | (0.15, 0.9) |
2 | Very low significance | (0.3, 0.85) |
3 | Low significance | (0.45, 0.65) |
4 | Medium significance | (0.5, 0.5) |
5 | High significance | (0.75, 0.4) |
6 | Very high significance | (0.8, 0.25) |
7 | Certainly high significance | (0.95, 0.1) |
Time | Cost | Quality | |
---|---|---|---|
A1 | (0.0000, 0.8295) | (0.7290, 0.8024) | (0.9382, 0.3349) |
A2 | (0.9235, 0.6744) | (0.9382, 0.3158) | (0.9413, 0.2385) |
A3 | (0.9235, 0.6177) | (0.9335, 0.3973) | (0.9382, 0.3146) |
A4 | (0.0000, 0.7061) | (0.9361, 0.4938) | (0.9335, 0.3386) |
A5 | (0.7290, 0.7897) | (0.9361, 0.4544) | (0.9413, 0.2622) |
A6 | (0.7290, 0.7665) | (0.9235, 0.5829) | (0.9425, 0.2313) |
A7 | (0.7290, 0.6843) | (0.9298, 0.4350) | (0.9382, 0.2974) |
A8 | (0.7290, 0.7133) | (0.9298, 0.4480) | (0.9436, 0.2037) |
A9 | (0.0000, 0.7875) | (0.9361, 0.4181) | (0.9382, 0.2891) |
A10 | (0.0000, 0.7387) | (0.9335, 0.4069) | (0.9413, 0.2723) |
A11 | (0.9235, 0.5303) | (0.9235, 0.6797) | (0.9462, 0.1704) |
A12 | (0.0000, 0.8546) | (0.7290, 0.8219) | (0.9382, 0.3660) |
A13 | (0.0000, 0.8727) | (0.9298, 0.5351) | (0.9361, 0.4376) |
A14 | (0.0000, 0.8340) | (0.9235, 0.4737) | (0.9425, 0.2652) |
A15 | (0.7290, 0.6970) | (0.9335, 0.4980) | (0.9454, 0.1819) |
A16 | (0.0000, 0.7622) | (0.9235, 0.5227) | (0.9361, 0.3007) |
A17 | (0.7290, 0.7895) | (0.9361, 0.3732) | (0.9382, 0.2814) |
A18 | (0.7830, 0.5781) | (0.9235, 0.5391) | (0.9462, 0.1555) |
A19 | (0.7340, 0.6990) | (0.9298, 0.5427) | (0.9398, 0.2569) |
A20 | (0.7777, 0.7033) | (0.9235, 0.5628) | (0.9413, 0.2542) |
A21 | (0.7340, 0.7010) | (0.7861, 0.5646) | (0.9398, 0.2567) |
A22 | (0.7340, 0.6886) | (0.7777, 0.6381) | (0.9398, 0.2593) |
A23 | (0.0000, 0.7622) | (0.9335, 0.4334) | (0.9335, 0.3464) |
A24 | (0.9235, 0.6306) | (0.9335, 0.4396) | (0.9454, 0.1706) |
A25 | (0.9235, 0.5647) | (0.9235, 0.5374) | (0.9436, 0.2065) |
A26 | (0.7290, 0.6552) | (0.9235, 0.5587) | (0.9436, 0.1882) |
A27 | (0.0000, 0.7165) | (0.9361, 0.3779) | (0.9398, 0.2637) |
A28 | (0.9235, 0.5937) | (0.9398, 0.3093) | (0.9436, 0.2010) |
A29 | (0.9235, 0.5866) | (0.9361, 0.3649) | (0.9436, 0.2015) |
A30 | (0.7777, 0.5938) | (0.9298, 0.4845) | (0.9446, 0.1836) |
A31 | (0.9235, 0.5817) | (0.9235, 0.5507) | (0.9436, 0.2063) |
A32 | (0.9235, 0.6353) | (0.9298, 0.5053) | (0.9413, 0.2285) |
A33 | (0.9235, 0.6358) | (0.9335, 0.5013) | (0.9382, 0.2842) |
A34 | (0.9298, 0.5793) | (0.9235, 0.6010) | (0.9398, 0.3153) |
A35 | (0.9235, 0.6341) | (0.9335, 0.4767) | (0.9382, 0.3046) |
A36 | (0.9335, 0.4680) | (0.9382, 0.3299) | (0.9398, 0.3021) |
A37 | (0.9298, 0.5319) | (0.9398, 0.2953) | (0.9398, 0.2406) |
A38 | (0.9298, 0.5010) | (0.9413, 0.2893) | (0.9425, 0.2208) |
HVCF | Time | Cost | Quality |
---|---|---|---|
(0, 1) | (0, 1) | (0, 1) | |
(0.04, 0.96) | (0.067, 0.933) | (0.28, 0.72) | |
(0.23, 0.77) | (0.4, 0.6) | (0.56, 0.44) | |
(0.33, 0.67) | (0.6, 0.4) | (0.7, 0.3) | |
(1, 0) | (1, 0) | (1, 0) | |
LVCF | Time | Cost | Quality |
(0, 1) | (0, 1) | (0, 1) | |
(0.17, 0.83) | (0.33, 0.67) | (0.42, 0.58) | |
(0.5, 0.5) | (0.67, 0.33) | (0.7, 0.3) | |
(0.83, 0.17) | (0.84, 0.16) | (0.84, 0.16) | |
(1, 0) | (1, 0) | (1, 0) | |
MVCF | Time | Cost | Quality |
(0, 1) | (0, 1) | (0, 1) | |
(0.28, 0.72) | (0.28, 0.72) | (0.28, 0.72) | |
(0.56, 0.44) | (0.56, 0.44) | (0.56, 0.44) | |
(0.84, 0.16) | (0.84, 0.16) | (0.84, 0.16) | |
(1, 0) | (1, 0) | (1, 0) |
1 | 0.5767 | −0.0958 | −0.3479 | −0.9783 | −0.1547 | |
1 | 0.5767 | 0.0838 | −0.1390 | −0.9566 | −0.5649 | |
1 | 0.5767 | 0.0833 | −0.1503 | −0.9746 | −0.5351 | |
1 | 0.5767 | 0.0255 | −0.2137 | −0.9799 | −0.4086 | |
1 | 0.5767 | 0.0241 | −0.2133 | −0.9721 | −0.4155 | |
1 | 0.5767 | 0.0102 | −0.2419 | −0.9728 | −0.3722 | |
1 | 0.5767 | 0.0458 | −0.1980 | −0.9771 | −0.4474 | |
1 | 0.5767 | 0.0459 | −0.1984 | −0.9713 | −0.4529 | |
1 | 0.5767 | 0.0065 | −0.2306 | −0.9741 | −0.3785 | |
1 | 0.5767 | 0.0238 | −0.2151 | −0.9737 | −0.4117 | |
1 | 0.5767 | 0.0620 | −0.1623 | −0.9690 | −0.5075 | |
1 | 0.5688 | −0.1146 | −0.3667 | −0.9790 | −0.1085 | |
1 | 0.5580 | −0.0438 | −0.2959 | −0.9824 | −0.2360 | |
1 | 0.5767 | −0.0176 | −0.2698 | −0.9731 | −0.3162 | |
1 | 0.5767 | 0.0508 | −0.1957 | −0.9697 | −0.4621 | |
1 | 0.5767 | 0.0022 | −0.2499 | −0.9777 | −0.3512 | |
1 | 0.5767 | 0.0224 | −0.2079 | −0.9670 | −0.4242 | |
1 | 0.5767 | 0.0844 | −0.1613 | −0.9685 | −0.5313 | |
1 | 0.5767 | 0.0494 | −0.2028 | −0.9748 | −0.4485 | |
1 | 0.5767 | 0.0400 | −0.2121 | −0.9737 | −0.4309 | |
1 | 0.5767 | 0.0237 | −0.2284 | −0.9747 | −0.3972 | |
1 | 0.5767 | 0.0120 | −0.2401 | −0.9752 | −0.3734 | |
1 | 0.5767 | 0.0099 | −0.2310 | −0.9812 | −0.3745 | |
1 | 0.5767 | 0.0913 | −0.1479 | −0.9694 | −0.5508 | |
1 | 0.5767 | 0.0765 | −0.1633 | −0.9712 | −0.5187 | |
1 | 0.5767 | 0.0401 | −0.2120 | −0.9709 | −0.4338 | |
1 | 0.5767 | 0.0283 | −0.2027 | −0.9666 | −0.4357 | |
1 | 0.5767 | 0.0896 | −0.1157 | −0.9507 | −0.5999 | |
1 | 0.5767 | 0.0894 | −0.1258 | −0.9615 | −0.5789 | |
1 | 0.5767 | 0.0829 | −0.1672 | −0.9702 | −0.5222 | |
1 | 0.5767 | 0.0731 | −0.1664 | −0.9715 | −0.5119 | |
1 | 0.5767 | 0.0871 | −0.1594 | −0.9730 | −0.5315 | |
1 | 0.5767 | 0.0840 | −0.1607 | −0.9767 | −0.5233 | |
1 | 0.5767 | 0.0637 | −0.1606 | −0.9765 | −0.5032 | |
1 | 0.5767 | 0.0839 | −0.1542 | −0.9768 | −0.5296 | |
1 | 0.5767 | 0.0848 | −0.1101 | −0.9591 | −0.5923 | |
1 | 0.5767 | 0.0865 | −0.1031 | −0.9521 | −0.6080 | |
1 | 0.5767 | 0.0884 | −0.0983 | −0.9474 | −0.6194 |
1 | 0.4303 | −0.1641 | −0.5736 | −0.9208 | 0.2281 | |
1 | 0.5788 | 0.0449 | −0.4928 | −0.8991 | −0.2317 | |
1 | 0.5757 | 0.0335 | −0.5041 | −0.9171 | −0.1880 | |
1 | 0.5383 | −0.0299 | −0.5232 | −0.9224 | −0.0628 | |
1 | 0.5368 | −0.0294 | −0.5154 | −0.9146 | −0.0774 | |
1 | 0.5349 | −0.0581 | −0.5507 | −0.9153 | −0.0109 | |
1 | 0.5586 | −0.0142 | −0.5248 | −0.9196 | −0.1000 | |
1 | 0.5558 | −0.0145 | −0.5194 | −0.9138 | −0.1080 | |
1 | 0.5193 | −0.0468 | −0.5174 | −0.9166 | −0.0386 | |
1 | 0.5366 | −0.0313 | −0.5170 | −0.9162 | −0.0721 | |
1 | 0.5625 | 0.0222 | −0.5155 | −0.9115 | −0.1577 | |
1 | 0.4116 | −0.1792 | −0.5743 | −0.9215 | 0.2633 | |
1 | 0.4726 | −0.1105 | −0.5419 | −0.9249 | 0.1047 | |
1 | 0.5023 | −0.0859 | −0.5373 | −0.9156 | 0.0366 | |
1 | 0.5590 | −0.0119 | −0.5200 | −0.9122 | −0.1150 | |
1 | 0.5262 | −0.0661 | −0.5450 | −0.9202 | 0.0051 | |
1 | 0.5351 | −0.0241 | −0.5103 | −0.9095 | −0.0913 | |
1 | 0.5788 | 0.0225 | −0.5151 | −0.9110 | −0.1752 | |
1 | 0.5670 | −0.0189 | −0.5356 | −0.9173 | −0.0951 | |
1 | 0.5657 | −0.0283 | −0.5478 | −0.9162 | −0.0734 | |
1 | 0.5498 | −0.0446 | −0.5611 | −0.9172 | −0.0269 | |
1 | 0.5381 | −0.0563 | −0.5705 | −0.9177 | 0.0063 | |
1 | 0.5227 | −0.0471 | −0.5260 | −0.9237 | −0.0260 | |
1 | 0.5788 | 0.0359 | −0.5017 | −0.9118 | −0.2012 | |
1 | 0.5788 | 0.0205 | −0.5171 | −0.9137 | −0.1685 | |
1 | 0.5629 | −0.0282 | −0.5434 | −0.9134 | −0.0779 | |
1 | 0.5411 | −0.0189 | −0.5099 | −0.9091 | −0.1033 | |
1 | 0.5788 | 0.0681 | −0.4696 | −0.8932 | −0.2842 | |
1 | 0.5788 | 0.0581 | −0.4796 | −0.9040 | −0.2533 | |
1 | 0.5788 | 0.0166 | −0.5211 | −0.9127 | −0.1616 | |
1 | 0.5761 | 0.0175 | −0.5202 | −0.9140 | −0.1593 | |
1 | 0.5788 | 0.0245 | −0.5132 | −0.9155 | −0.1746 | |
1 | 0.5763 | 0.0232 | −0.5145 | −0.9192 | −0.1658 | |
1 | 0.5694 | 0.0267 | −0.5110 | −0.9190 | −0.1661 | |
1 | 0.5762 | 0.0296 | −0.5080 | −0.9193 | −0.1786 | |
1 | 0.5771 | 0.1013 | −0.4363 | −0.9016 | −0.3405 | |
1 | 0.5788 | 0.0939 | −0.4437 | −0.8946 | −0.3344 | |
1 | 0.5788 | 0.1028 | −0.4348 | −0.8899 | −0.3569 |
1 | 0.3770 | −0.0695 | −0.6153 | −0.9221 | 0.2299 | |
1 | 0.5283 | 0.1394 | −0.5384 | −0.9004 | −0.2289 | |
1 | 0.5350 | 0.1281 | −0.5497 | −0.9184 | −0.1949 | |
1 | 0.4768 | 0.0647 | −0.5649 | −0.9237 | −0.0529 | |
1 | 0.4694 | 0.0651 | −0.5571 | −0.9159 | −0.0615 | |
1 | 0.4761 | 0.0365 | −0.5923 | −0.9166 | −0.0036 | |
1 | 0.4941 | 0.0803 | −0.5665 | −0.9209 | −0.0871 | |
1 | 0.4883 | 0.0800 | −0.5611 | −0.9151 | −0.0922 | |
1 | 0.4541 | 0.0478 | −0.5590 | −0.9179 | −0.0250 | |
1 | 0.4692 | 0.0633 | −0.5587 | −0.9175 | −0.0563 | |
1 | 0.5400 | 0.1167 | −0.5611 | −0.9128 | −0.1828 | |
1 | 0.3589 | −0.0812 | −0.6159 | −0.9228 | 0.2610 | |
1 | 0.4134 | 0.0004 | −0.5836 | −0.9262 | 0.0960 | |
1 | 0.4348 | 0.0086 | −0.5790 | −0.9169 | 0.0524 | |
1 | 0.4916 | 0.0827 | −0.5617 | −0.9135 | −0.0992 | |
1 | 0.4623 | 0.0284 | −0.5866 | −0.9215 | 0.0174 | |
1 | 0.4697 | 0.0704 | −0.5520 | −0.9108 | −0.0773 | |
1 | 0.5382 | 0.1171 | −0.5607 | −0.9123 | −0.1822 | |
1 | 0.5002 | 0.0756 | −0.5773 | −0.9186 | −0.0798 | |
1 | 0.5030 | 0.0663 | −0.5894 | −0.9175 | −0.0623 | |
1 | 0.4929 | 0.0499 | −0.6028 | −0.9185 | −0.0215 | |
1 | 0.4817 | 0.0383 | −0.6121 | −0.9190 | 0.0112 | |
1 | 0.4623 | 0.0474 | −0.5676 | −0.9250 | −0.0171 | |
1 | 0.5337 | 0.1305 | −0.5473 | −0.9131 | −0.2037 | |
1 | 0.5442 | 0.1151 | −0.5627 | −0.9150 | −0.1815 | |
1 | 0.4987 | 0.0663 | −0.5851 | −0.9147 | −0.0652 | |
1 | 0.4744 | 0.0757 | −0.5515 | −0.9104 | −0.0882 | |
1 | 0.5456 | 0.1612 | −0.5152 | −0.8945 | −0.2971 | |
1 | 0.5463 | 0.1526 | −0.5252 | −0.9053 | −0.2684 | |
1 | 0.5243 | 0.1111 | −0.5659 | −0.9140 | −0.1555 | |
1 | 0.5445 | 0.1120 | −0.5658 | −0.9153 | −0.1754 | |
1 | 0.5375 | 0.1190 | −0.5588 | −0.9168 | −0.1809 | |
1 | 0.5331 | 0.1177 | −0.5601 | −0.9205 | −0.1702 | |
1 | 0.5463 | 0.1212 | −0.5566 | −0.9203 | −0.1907 | |
1 | 0.5395 | 0.1242 | −0.5536 | −0.9206 | −0.1895 | |
1 | 0.5463 | 0.1959 | −0.4819 | −0.9029 | −0.3574 | |
1 | 0.5463 | 0.1853 | −0.4893 | −0.8959 | −0.3464 | |
1 | 0.5463 | 0.1913 | −0.4805 | −0.8912 | −0.3661 |
Delay Causes | High | Medium | Low | Insignificant |
---|---|---|---|---|
0 | 0.8990 | 0.1010 | 0 | |
0.8687 | 0.1313 | 0 | 0 | |
0.8485 | 0.1515 | 0 | 0 | |
0 | 0.9798 | 0.0202 | 0 | |
0 | 0.9798 | 0.0202 | 0 | |
0 | 0.9697 | 0.0303 | 0 | |
0 | 0.9899 | 0.0101 | 0 | |
0 | 0.9899 | 0.0101 | 0 | |
0 | 0.9697 | 0.0303 | 0 | |
0 | 0.9798 | 0.0202 | 0 | |
0.8283 | 0.1616 | 0.0101 | 0 | |
0 | 0.8990 | 0.0909 | 0.0101 | |
0 | 0.9495 | 0.0505 | 0 | |
0 | 0.9596 | 0.0404 | 0 | |
0 | 0.9899 | 0.0101 | 0 | |
0 | 0.9697 | 0.0303 | 0 | |
0 | 0.9798 | 0.0202 | 0 | |
0.4343 | 0.5657 | 0 | 0 | |
0 | 0.9798 | 0.0202 | 0 | |
0.3232 | 0.6566 | 0.0202 | 0 | |
0 | 0.9697 | 0.0303 | 0 | |
0 | 0.9697 | 0.0303 | 0 | |
0 | 0.9697 | 0.0303 | 0 | |
0.8586 | 0.1414 | 0 | 0 | |
0.8182 | 0.1818 | 0 | 0 | |
0 | 0.9798 | 0.0202 | 0 | |
0 | 0.9899 | 0.0101 | 0 | |
0.8788 | 0.1212 | 0 | 0 | |
0.8687 | 0.1313 | 0 | 0 | |
0.4242 | 0.5758 | 0 | 0 | |
0.8182 | 0.1818 | 0 | 0 | |
0.8384 | 0.1515 | 0.0101 | 0 | |
0.8485 | 0.1414 | 0.0101 | 0 | |
0.8485 | 0.1414 | 0.0101 | 0 | |
0.8485 | 0.1414 | 0.0101 | 0 | |
0.9293 | 0.0707 | 0 | 0 | |
0.9091 | 0.0909 | 0 | 0 | |
0.9192 | 0.0808 | 0 | 0 |
QRFOWA | Wq-ROFHA | q-ROFDWA | q-ROFPoWA | q-ROFWEA | |
QRFOWA | 1 | 0.8684 | 0.8947 | 0.5263 | 0.0000 |
Wq-ROFHA | - | 1 | 0.7632 | 0.3947 | 0.0000 |
q-ROFDWA | - | - | 1 | 0.5789 | 0.0000 |
q-ROFPoWA | - | - | - | 1 | 0.0000 |
q-ROFWEA | - | - | - | - | 1 |
1 | 0.8421 | 0.7895 | 0.8684 | 0.9474 | |
- | 1 | 0.9474 | 0.9737 | 0.7895 | |
- | - | 1 | 0.9211 | 0.7368 | |
- | - | - | 1 | 0.8158 | |
- | - | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oraya, A.F.; Canseco-Tuñacao, H.A.; Luciano, R.; Patadlas, A.; Baguio, I.; Aro, J.L.; Maturan, F.; Ocampo, L. An Integrated Multicriteria Sorting Methodology with q-Rung Orthopair Fuzzy Sets for Evaluating the Impacts of Delays on Residential Construction Projects. Axioms 2023, 12, 735. https://doi.org/10.3390/axioms12080735
Oraya AF, Canseco-Tuñacao HA, Luciano R, Patadlas A, Baguio I, Aro JL, Maturan F, Ocampo L. An Integrated Multicriteria Sorting Methodology with q-Rung Orthopair Fuzzy Sets for Evaluating the Impacts of Delays on Residential Construction Projects. Axioms. 2023; 12(8):735. https://doi.org/10.3390/axioms12080735
Chicago/Turabian StyleOraya, Aure Flo, Hana Astrid Canseco-Tuñacao, Ryan Luciano, Aiza Patadlas, Ike Baguio, Joerabell Lourdes Aro, Fatima Maturan, and Lanndon Ocampo. 2023. "An Integrated Multicriteria Sorting Methodology with q-Rung Orthopair Fuzzy Sets for Evaluating the Impacts of Delays on Residential Construction Projects" Axioms 12, no. 8: 735. https://doi.org/10.3390/axioms12080735
APA StyleOraya, A. F., Canseco-Tuñacao, H. A., Luciano, R., Patadlas, A., Baguio, I., Aro, J. L., Maturan, F., & Ocampo, L. (2023). An Integrated Multicriteria Sorting Methodology with q-Rung Orthopair Fuzzy Sets for Evaluating the Impacts of Delays on Residential Construction Projects. Axioms, 12(8), 735. https://doi.org/10.3390/axioms12080735