Mesospheric Ozone Depletion during 2004–2024 as a Function of Solar Proton Events Intensity
<p>Results of superposed epoch analysis of Aura MLS ozone altitudinal profiles over 60–80 NH before and after SPEs, which are summarized in <a href="#atmosphere-15-00944-t001" class="html-table">Table 1</a>.</p> "> Figure 2
<p>Results of superposed epoch analysis of Aura MLS ozone altitudinal profiles over 60–80 SH before and after SPEs, which are summarized in <a href="#atmosphere-15-00944-t002" class="html-table">Table 2</a>.</p> "> Figure 3
<p>Northern hemisphere ozone depletion (in %) after SPEs compared to the average ozone concentration observed before SPEs, which are summarized in <a href="#atmosphere-15-00944-t001" class="html-table">Table 1</a>. The ozone profile for each day is obtained using superposed epoch analysis of Aura MLS ozone altitudinal profiles for 60–80 NH after moderate SPEs with a proton flux intensity of more than 100 pfu.</p> "> Figure 4
<p>Northern hemisphere ozone depletion (in %) after SPEs compared to the average ozone concentration observed before SPEs, which are summarized in <a href="#atmosphere-15-00944-t001" class="html-table">Table 1</a>. The ozone profile for each day is obtained using superposed epoch analysis of Aura MLS ozone altitudinal profiles for 60–80 NH after strong SPEs with a proton flux intensity of more than 1000 pfu.</p> "> Figure 5
<p>Southern hemisphere ozone depletion (in %) after SPEs compared to the average ozone concentration observed before SPEs, which are summarized in <a href="#atmosphere-15-00944-t002" class="html-table">Table 2</a>. Each day ozone profile—results superposed epoch analysis of Aura MLS ozone altitudinal profiles for 60–80 SH after solar proton events. Moderate SPEs—with a proton flux intensity of more than 100 pfu.</p> "> Figure 6
<p>Southern hemisphere ozone depletion (in %) after SPEs compared to the average ozone concentration observed before SPEs, which are summarized in <a href="#atmosphere-15-00944-t002" class="html-table">Table 2</a>. Each day ozone profile—results superposed epoch analysis of Aura MLS ozone altitudinal profiles for 60–80 SH after SPE. Strong solar proton events—with a proton flux intensity of more than 1000 pfu.</p> ">
Abstract
:1. Introduction
2. Data, Methods, and Results
2.1. Solar Proton Events Registration
2.2. Aura MLS Ozone Observation
2.3. Superposed Epoch Analysis
2.4. Results
3. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randall, C.E.; Harvey, V.L.; Manney, G.L.; Orsolini, Y.; Codrescu, M.; Sioris, C.; Brohede, S.; Haley, C.S.; Gordley, L.L.; Zawodny, J.M.; et al. Stratospheric effects of energetic particle precipitation in 2003–2004. Geoph. Res. Lett. 2005, 32, L05802. [Google Scholar] [CrossRef]
- Rozanov, E.; Calisto, M.; Egorova, T.; Peter, T.; Schmutz, W. Influence of the Precipitating Energetic Particles on Atmospheric Chemistry and Climate. Surv. Geophys. 2012, 33, 483–501. [Google Scholar] [CrossRef]
- Mironova, I.A.; Aplin, K.L.; Arnold, F.; Bazilevskaya, G.A.; Harrison, R.G.; Krivolutsky, A.A.; Nicoll, K.A.; Rozanov, E.V.; Turunen, E.; Usoskin, I.G. Energetic Particle Influence on the Earth’s Atmosphere. Space Sci. Rev. 2015, 194, 1–96. [Google Scholar] [CrossRef]
- Matthes, K.; Funke, B.; Andersson, M.E.; Barnard, L.; Beer, J.; Charbonneau, P.; Clilverd, M.A.; Dudok de Wit, T.; Haberreiter, M.; Hendry, A.; et al. Solar forcing for CMIP6 (v3.2). Geosci. Model Dev. 2017, 10, 2247–2302. [Google Scholar] [CrossRef]
- Sinnhuber, M.; Berger, U.; Funke, B.; Nieder, H.; Reddmann, T.; Stiller, G.; Versick, S.; von Clarmann, T.; Maik Wissing, J. NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010. Atm. Chem. Phys. 2018, 18, 1115–1147. [Google Scholar] [CrossRef]
- Randall, C.; Harvey, L.; Pedatella, N.; Bailey, S.; Maruyama, N.; Chen, T. Sun-Earth Coupling via Energetic Particle Precipitation. Bull. Am. Astron. Soc. 2023, 55, 332. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Kovaltsov, G.A.; Mironova, I.A. Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere. J. Geophys. Res. Atmos. 2010, 115, D10302. [Google Scholar] [CrossRef]
- Fang, X.; Randall, C.E.; Lummerzheim, D.; Wang, W.; Lu, G.; Solomon, S.C.; Frahm, R.A. Parameterization of monoenergetic electron impact ionization. Geoph. Res. Lett. 2010, 37, L22106. [Google Scholar] [CrossRef]
- Artamonov, A.A.; Mishev, A.L.; Usoskin, I.G. Atmospheric ionization induced by precipitating electrons: Comparison of CRAC:EPII model with a parametrization model. J. Atmos. Sol. -Terr. Phys. 2016, 149, 161–166. [Google Scholar] [CrossRef]
- Xu, W.; Marshall, R.A.; Tyssøy, H.N.; Fang, X. A Generalized Method for Calculating Atmospheric Ionization by Energetic Electron Precipitation. J. Geophys. Res. (Space Phys.) 2020, 125, e28482. [Google Scholar] [CrossRef]
- Mironova, I.; Kovaltsov, G.; Mishev, A.; Artamonov, A. Ionization in the Earth’s Atmosphere Due to Isotropic Energetic Electron Precipitation: Ion Production and Primary Electron Spectra. Remote Sens. 2021, 13, 4161. [Google Scholar] [CrossRef]
- Rycroft, M.J.; Nicoll, K.A.; Aplin, K.L.; Giles Harrison, R. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. 2012, 90, 198–211. [Google Scholar] [CrossRef]
- Bozóki, T.; Sátori, G.; Williams, E.; Mironova, I.; Steinbach, P.; Bland, E.C.; Koloskov, A.; Yampolski, Y.M.; Budanov, O.V.; Neska, M.; et al. Solar cycle-modulated deformation of the Earth-ionosphere cavity. Front. Earth Sci. 2021, 9, 735. [Google Scholar] [CrossRef]
- Kirillov, A.S. Calculation of rate coefficients of electron energy transfer processes for molecular nitrogen and molecular oxygen. Adv. Space Res. 2004, 33, 998–1004. [Google Scholar] [CrossRef]
- Jackman, C.H.; Marsh, D.R.; Vitt, F.M.; Garcia, R.R.; Fleming, E.L.; Labow, G.J.; Randall, C.E.; López-Puertas, M.; Funke, B.; von Clarmann, T.; et al. Short and medium term atmospheric constituent effects of very large solar proton events. Atm. Chem. Phys. 2008, 8, 765–785. [Google Scholar] [CrossRef]
- Tacza, J.; Raulin, J.P.; Mendonca, R.R.S.; Makhmutov, V.S.; Marun, A.; Fernandez, G. Solar Effects on the Atmospheric Electric Field During 2010–2015 at Low Latitudes. J. Geophys. Res. Atmos. 2018, 123, 11970–11979. [Google Scholar] [CrossRef]
- Meraner, K.; Schmidt, H. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation. Atm. Chem. Phys. 2018, 18, 1079–1089. [Google Scholar] [CrossRef]
- Solomon, S.; Rusch, D.W.; Gerard, J.C.; Reid, G.C.; Crutzen, P.J. The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planet. Space Sci. 1981, 29, 885–893. [Google Scholar] [CrossRef]
- Porter, H.S.; Jackman, C.H.; Green, A.E.S. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air. J. Chem. Phys. 1976, 65, 154–167. [Google Scholar] [CrossRef]
- Funke, B.; Baumgaertner, A.; Calisto, M.; Egorova, T.; Jackman, C.H.; Kieser, J.; Krivolutsky, A.; López-Puertas, M.; Marsh, D.R.; Reddmann, T.; et al. Composition changes after the “Halloween” solar proton event: The High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atm. Chem. Phys. 2011, 11, 9089–9139. [Google Scholar] [CrossRef]
- Andersson, M.E.; Verronen, P.T.; Marsh, D.R.; Seppälä, A.; Päivärinta, S.M.; Rodger, C.J.; Clilverd, M.A.; Kalakoski, N.; van de Kamp, M. Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons. J. Geophys. Res. Atmos. 2018, 123, 607–622. [Google Scholar] [CrossRef]
- Mironova, I.; Karagodin-Doyennel, A.; Rozanov, E. The effect of Forbush decreases on the polar-night HOx concentration affecting stratospheric ozone. Front. Earth Sci. 2021, 8, 669. [Google Scholar] [CrossRef]
- Grankin, D.; Mironova, I.; Bazilevskaya, G.; Rozanov, E.; Egorova, T. Atmospheric Response to EEP during Geomagnetic Disturbances. Atmosphere 2023, 14, 273. [Google Scholar] [CrossRef]
- Seppala, A.; Clilverd, M.A.; Beharrell, M.J.; Rodger, C.J.; Verronen, P.T.; Andersson, M.E.; Newnham, D.A. Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry. Geoph. Res. Lett. 2015, 42, 8172–8176. [Google Scholar] [CrossRef]
- Andersson, M.E.; Verronen, P.T.; Rodger, C.J.; Clilverd, M.A.; Seppälä, A. Missing driver in the Sun-Earth connection from energetic electron precipitation impacts mesospheric ozone. Nat. Commun. 2014, 5, 5197. [Google Scholar] [CrossRef]
- Mironova, I.; Grankin, D.; Rozanov, E. Mesospheric Ozone Depletion Depending on Different Levels of Geomagnetic Disturbances and Seasons. Atmosphere 2023, 14, 1205. [Google Scholar] [CrossRef]
- Jackman, C.H.; Deland, M.T.; Labow, G.J.; Fleming, E.L.; Weisenstein, D.K.; Ko, M.K.W.; Sinnhuber, M.; Russell, J.M. Neutral atmospheric influences of the solar proton events in October–November 2003. J. Geophys. Res. (Space Phys.) 2005, 110, A09S27. [Google Scholar] [CrossRef]
- Jackman, C.H.; Randall, C.E.; Harvey, V.L.; Wang, S.; Fleming, E.L.; López-Puertas, M.; Funke, B.; Bernath, P.F. Middle atmospheric changes caused by the January and March 2012 solar proton events. Atm. Chem. Phys. 2014, 14, 1025–1038. [Google Scholar] [CrossRef]
- Shea, M.A.; Smart, D.F. A Summary of Major Solar Proton Events. Sol. Phys. 1990, 127, 297–320. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Usoskin, I.G.; Flückiger, E.O.; Harrison, R.G.; Desorgher, L.; Bütikofer, R.; Krainev, M.B.; Makhmutov, V.S.; Stozhkov, Y.I.; Svirzhevskaya, A.K.; et al. Cosmic Ray Induced Ion Production in the Atmosphere. Space Sci. Rev. 2008, 137, 149–173. [Google Scholar] [CrossRef]
- Livesey, N.J.; Tang, A.J.; Chattopadhyay, G.; Stachnik, R.A.; Jarnot, R.; Kooi, J.W.; Millan, L.; Santee, M.L.; Chang, M.C.; Huang, R. A Continuity Microwave Limb Sounder (MLS) instrument to augment the record from Aura MLS. AGU Fall Meet. Abstr. 2020, 2020, A197-09. [Google Scholar]
SPE Start Date | SPE Maximum Date | >10 MeV Maximum (pfu) |
---|---|---|
Yr M/D (UTC) | Yr M/D (UTC) | |
2004 09/13 2005 | 2004 09/14 0005 | 273 |
2005 01/16 0210 | 2005 01/17 1750 | 5040 |
2005 09/08 0215 | 2005 09/11 0425 | 1880 |
2006 12/06 1555 | 2006 12/07 1930 | 1980 |
2012 01/23 0530 | 2012 01/24 1530 | 6310 |
2012 03/07 0510 | 2012 03/08 1115 | 6530 |
2013 09/30 0505 | 2013 09/30 2005 | 182 |
2014 09/11 0240 | 2014 09/12 1555 | 126 |
2017 09/05 0040 | 2017 09/08 0035 | 844 |
2024 01/29 0615 | 2024 01/29 1805 | 137 |
2024 03/23 0815 | 2024 03/23 1820 | 956 |
SPE Start Date | SPE Maximum Date | >10 MeV Maximum (pfu) |
---|---|---|
Yr M/D (UTC) | Yr M/D (UTC) | |
2005 05/14 0525 | 22005 05/15 0240 | 3140 |
2005 07/14 0245 | 2005 07/15 0345 | 134 |
2005 08/22 2040 | 2005 08/23 1045 | 330 |
2012 05/17 0210 | 2012 05/17 0430 | 255 |
2013 04/11 1055 | 2013 04/11 1645 | 114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doronin, G.; Mironova, I.; Bobrov, N.; Rozanov, E. Mesospheric Ozone Depletion during 2004–2024 as a Function of Solar Proton Events Intensity. Atmosphere 2024, 15, 944. https://doi.org/10.3390/atmos15080944
Doronin G, Mironova I, Bobrov N, Rozanov E. Mesospheric Ozone Depletion during 2004–2024 as a Function of Solar Proton Events Intensity. Atmosphere. 2024; 15(8):944. https://doi.org/10.3390/atmos15080944
Chicago/Turabian StyleDoronin, Grigoriy, Irina Mironova, Nikita Bobrov, and Eugene Rozanov. 2024. "Mesospheric Ozone Depletion during 2004–2024 as a Function of Solar Proton Events Intensity" Atmosphere 15, no. 8: 944. https://doi.org/10.3390/atmos15080944
APA StyleDoronin, G., Mironova, I., Bobrov, N., & Rozanov, E. (2024). Mesospheric Ozone Depletion during 2004–2024 as a Function of Solar Proton Events Intensity. Atmosphere, 15(8), 944. https://doi.org/10.3390/atmos15080944