Using Copernicus Atmosphere Monitoring Service (CAMS) Products to Assess Illuminances at Ground Level under Cloudless Conditions
<p>Illustration of the spectral resampling technique. The clearness indices obtained between 363 and 791 nm by two runs of libRadtran are shown in green and brown respectively for detailed calculations at 1 nm resolution and for the Kato et al. [<a href="#B12-atmosphere-12-00643" class="html-bibr">12</a>] scheme. The selected fine bands FB are shown by crosses in magenta. The linear interpolation provides the clearness indices every 1 nm drawn in blue.</p> "> Figure 2
<p>Two-dimensional (2D) histogram between measurements and estimates of global illuminance on horizontal surface at Golden. The color bar depicts the number of points in the area of 1.5 klx × 1.5 klx. The two thin magenta lines delimit the area of relative errors of ±8% from the measurements.</p> "> Figure 3
<p>Box plots of the ratio (<b>top</b>) of the estimated (Esti) to the measured (Meas) global illuminance on horizontal surface and difference (<b>bottom</b>) between estimated and measured global illuminance on horizontal surface with CAMS input data at Golden. The mean of the box is marked with a red dot. The 1st, 2nd, and 3rd quartiles are marked with a blue line. The notch in the box shows the 95% confidence interval around the median. The number of data for a given range are reported in pink number.</p> "> Figure 3 Cont.
<p>Box plots of the ratio (<b>top</b>) of the estimated (Esti) to the measured (Meas) global illuminance on horizontal surface and difference (<b>bottom</b>) between estimated and measured global illuminance on horizontal surface with CAMS input data at Golden. The mean of the box is marked with a red dot. The 1st, 2nd, and 3rd quartiles are marked with a blue line. The notch in the box shows the 95% confidence interval around the median. The number of data for a given range are reported in pink number.</p> "> Figure 4
<p>Diurnal variability of AOD at 550 nm from CAMS and measurements at Golden on 15 April 2017. SCI stands for selected cloudless instant.</p> "> Figure 5
<p>Two-dimensional (2D) histogram between measurements and estimates of global illuminance at Vaulx-en-Velin. The color bar depicts the number of points in the area of 1.5 klx × 1.5 klx. The two thin magenta lines delimit the area of relative errors of ±5 % from the measurements.</p> "> Figure 6
<p>Two-dimensional (2D) histogram between measurements and estimates of direct illuminance at normal incidence at Vaulx-en-Velin. The colorbar depicts the number of points in the area of 1.5 klx × 1.5 klx. The two thin magenta lines delimit the area of relative errors of ±5% from the measurements.</p> ">
Abstract
:1. Introduction
2. Description of Measurements Used for the Validation
3. Description of the Method
3.1. Data Exploited by Libradtran
3.2. Spectral Resampling Technique
4. Results and Discussion
4.1. Validation on Global Illuminance on Horizontal Surface
4.2. Validation on Direct Illuminance at Normal Incidence
4.3. Error Analysis on Estimated Illuminances
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oteiza, P.; Pérez-Burgos, A. Diffuse illuminance availability on horizontal and vertical surfaces at Madrid, Spain. Energy Convers. Manag. 2012, 64, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Council, E. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Off. J. Eur. Union 2010, 153, 13–35. [Google Scholar]
- Ayoub, M. 100 Years of daylighting: A chronological review of daylight prediction and calculation methods. Sol. Energy 2019, 194, 360–390. [Google Scholar] [CrossRef]
- Galasiu, A.D.; Reinhart, C.F. Current daylighting design practice: A survey. Build. Res. Inf. 2008, 36, 159–174. [Google Scholar] [CrossRef]
- Darula, S.; Kittler, R.; Gueymard, C.A. Reference luminous solar constant and solar luminance for illuminance calculations. Sol. Energy 2005, 79, 559–565. [Google Scholar] [CrossRef]
- Blanc, P.; Gschwind, B.; Lefèvre, M.; Wald, L. The HelioClim project: Surface solar irradiance data for climate applications. Remote Sens. 2011, 3, 343–361. [Google Scholar] [CrossRef] [Green Version]
- Lefèvre, M.; Blanc, P.; Espinar, B.; Gschwind, B.; Ménard, L.; Ranchin, T.; Wald, L.; Saboret, L.; Thomas, C.; Wey, E. The HelioClim-1 database of daily solar radiation at Earth surface: An example of the benefits of GEOSS Data-CORE. IEEE J. STARS 2014, 7, 1745–1753. [Google Scholar] [CrossRef] [Green Version]
- López, G.; Gueymard, C.A. Clear-sky solar luminous efficacy determination using artificial neural networks. Sol. Energy 2007, 81, 929–939. [Google Scholar] [CrossRef]
- Dieste-Velasco, M.I.; Díez-Mediavilla, M.; Alonso-Tristán, C.; González-Peña, D.; Rodríguez-Amigo, M.D.C.; García-Calderón, T. A new diffuse luminous efficacy model for daylight availability in Burgos, Spain. Renew. Energy 2020, 146, 2812–2826. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef] [Green Version]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations-description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Ackerman, T.; Mather, J.; Clothiaux, E. The k-distribution method and correlated-k approximation for shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transf. 1999, 62, 109–121. [Google Scholar] [CrossRef]
- Lefevre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Wald, L.; Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Arola, A.; et al. McClear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Tech. 2013, 6, 2403–2418. [Google Scholar] [CrossRef] [Green Version]
- Gschwind, B.; Wald, L.; Blanc, P.; Lefèvre, M.; Schroedter-Homscheidt, M.; Arola, A. Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions–McClear-v3. Meteorol. Z. 2019, 28, 147–163. [Google Scholar] [CrossRef]
- Wandji Nyamsi, W.; Espinar, B.; Blanc, P.; Wald, L. How close to detailed spectral calculations is the k-distribution method and correlated-k approximation of Kato et al. (1999) in each spectral interval? Meteorol. Z. 2014, 23, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Wandji Nyamsi, W.; Pitkänen, M.; Aoun, Y.; Blanc, P.; Heikkilä, A.; Lakkala, K.; Bernhard, G.; Koskela, T.; Lindfors, A.; Arola, A.; et al. A new method for estimating UV fluxes at ground level in cloud-free conditions. Atmos. Meas. Tech. 2017, 10, 4965–4978. [Google Scholar] [CrossRef] [Green Version]
- Wandji Nyamsi, W.; Arola, A.; Blanc, P.; Lindfors, A.V.; Cesnulyte, V.; Pitkänen, M.R.A.; Wald, L. Technical Note: A novel parameterization of the transmissivity due to ozone absorption in the k-distribution method and correlated-k approximation of Kato et al. (1999) over the UV band. Atmos. Chem. Phys. 2015, 15, 7449–7456. [Google Scholar] [CrossRef] [Green Version]
- Wandji Nyamsi, W.; Espinar, B.; Blanc, P.; Wald, L. Estimating the photosynthetically active radiation under clear skies by means of a new approach. Adv. Sci. Res. 2015, 12, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Wandji Nyamsi, W.; Blanc, P.; Augustine, J.A.; Arola, A.; Wald, L. A new clear-sky method for assessing photosynthetically active radiation at the surface level. Atmosphere 2019, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Dumortier, D. Mesure, Analyse et Modélisation du Gisement Lumineux. Application à l’évaluation des Performances de l’éclairage Naturel des Bâtiments. Ph.D. Thesis, Université de Savoie, Savoie, France, 1995. [Google Scholar]
- Blanc, P.; Wald, L. The SG2 algorithm for a fast and accurate computation of the position of the Sun. Sol. Energy 2012, 86, 3072–3083. [Google Scholar] [CrossRef] [Green Version]
- Light Measurement. Available online: https://www.licor.com/documents/3bjwy50xsb49jqof0wz4 (accessed on 1 December 2020).
- Gueymard, C.A. The sun’s total and the spectral irradiance for solar energy applications and solar radiations models. Sol. Energy 2004, 76, 423–452. [Google Scholar] [CrossRef]
- Bosch, J.L.; López, G.; Batlles, F.J. Global and direct photosynthetically active radiation parameterizations for clear-sky conditions. Agric. For. Meteorol. 2009, 149, 146–158. [Google Scholar] [CrossRef]
- Blanc, P.; Gschwind, B.; Lefèvre, M.; Wald, L. Twelve monthly maps of ground albedo parameters derived from MODIS data sets. In Proceedings of the IGARSS 2014, Quebec, QC, Canada, 13–18 July 2014; pp. 3270–3272. [Google Scholar] [CrossRef]
- Gschwind, B.; Ménard, L.; Albuisson, M.; Wald, L. Converting a successful research project into a sustainable service: The case of the SoDaWeb service. Environ. Model. Softw. 2006, 21, 1555–1561. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C.A.; Yang, D. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmos. Environ. 2020, 225, 117216. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Oumbe, A.; Qu, Z.; Blanc, P.; Lefèvre, M.; Wald, L.; Cros, S. Decoupling the effects of clear atmosphere and clouds to simplify calculations of the broadband solar irradiance at ground level. Geosci. Model Dev. 2014, 7, 1661–1669, Corrigendum, 2014, 7, 2409. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.H.; Ma, M.G.; Liang, S.L.; Liu, S.M.; Li, X. A LUT-based approach to estimate surface solar irradiance by combining MODIS and MTSAT data. J. Geophys. Res. Atmos. 2011, 116, D22201. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Oumbe, A.; Blanc, P.; Espinar, B.; Gesell, G.; Gschwind, B.; Klüser, L.; Lefèvre, M.; Saboret, L.; Schroedter-Homscheidt, M.; et al. Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method. Meteorol. Z. 2017, 26, 33–57. [Google Scholar] [CrossRef]
- Calbó, J.; Pages, D.; González, J.A. Empirical studies of cloud effects on UV radiation: A review. Rev. Geophys. 2005, 43, RG2002. [Google Scholar] [CrossRef] [Green Version]
- Den Outer, P.N.; Slaper, H.; Kaurola, J.; Lindfors, A.; Kazantzidis, A.; Bais, A.F.; Feister, U.; Junk, J.; Janouch, M.; Josefsson, W. Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades. J. Geophys. Res. Atmos. 2010, 115, D10102. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Herman, J.R.; Bhartia, P.K.; Fioletov, V.; Ahmad, Z. Satellite estimation of spectral surface UV irradiance:2. Effects of homogeneous clouds and snow. J. Geophys. Res. Atmos. 2001, 106, 11743–11759. [Google Scholar] [CrossRef]
Station | Country | Lat. (°) | Long. (°) | Altitude a.s.l (m) | CAMS Mean Altitude (m) | Period |
---|---|---|---|---|---|---|
Vaulx-en-Velin | France | 45.78 | 4.92 | 170 | 634 | 1 January 2006 to 30 June 2020 |
Golden, CO | United States | 39.74 | −105.18 | 1829 | 2200 | 5 May 2005 to 31 December 2019 |
KBi | Interval Δλ, nm | Fine Band FBj, nm | Clearness Index | Direct Clearness Index | ||
---|---|---|---|---|---|---|
6 | 363–408 | 385–386 | 1.0030 | −0.0032 | 0.9987 | −0.0023 |
7 | 408–452 | 430–431 | 0.9995 | 0.0013 | 1.0026 | −0.0004 |
8 | 452–518 | 484–485 | 0.9979 | 0.0000 | 1.0034 | 0.0005 |
9 | 518–540 | 528–529 | 1.0008 | −0.0013 | 0.9998 | −0.0005 |
10 | 540–550 | 545–546 | 1.0003 | −0.0003 | 1.0001 | 0.0003 |
11 | 550–567 | 558–559 | 0.9997 | 0.0012 | 1.0004 | 0.0004 |
569–570 | 1.0024 | −0.0100 | 0.9960 | −0.0119 | ||
12 | 567–605 | 586–587 | 0.9929 | 0.0267 | 1.0123 | 0.0064 |
589–590 | 0.9804 | −0.0434 | 0.9568 | −0.0109 | ||
602–603 | 1.0051 | 0.0212 | 1.0150 | 0.0167 | ||
13 | 605–625 | 615–616 | 0.9977 | 0.0033 | 1.0004 | 0.0009 |
625–626 | 1.0622 | −0.0551 | 1.0104 | −0.0174 | ||
14 | 625–667 | 644–645 | 0.9960 | 0.0154 | 1.0072 | 0.0029 |
656–657 | 0.9698 | 0.0205 | 0.9915 | 0.0068 | ||
15 | 667–684 | 675–676 | 0.9978 | 0.0036 | 1.0006 | 0.0007 |
685–686 | 0.9681 | 0.1036 | 1.0473 | 0.0212 | ||
16 | 684–704 | 687–688 | 1.0041 | −0.0531 | 0.9602 | −0.0130 |
694–695 | 1.0323 | −0.0642 | 0.9828 | −0.0153 | ||
715–716 | 0.9771 | 0.0596 | 1.0262 | 0.0121 | ||
719–720 | 1.1197 | −0.2733 | 0.899 | −0.0704 | ||
17 | 704–743 | 722–723 | 1.0457 | −0.0491 | 1.0049 | −0.0118 |
724–725 | 1.1046 | −0.1921 | 0.9484 | −0.0478 | ||
736–737 | 0.9663 | 0.0626 | 1.0156 | 0.0212 | ||
744–745 | 1.0401 | 0.0262 | 1.0629 | −0.0036 | ||
757–758 | 1.0169 | 0.0580 | 1.0622 | 0.0096 | ||
760–761 | 0.7613 | −0.3480 | 0.4914 | –0.0805 | ||
18 | 743–791 | 769–770 | 0.9975 | 0.0598 | 1.0459 | 0.0137 |
784–785 | 0.9688 | 0.1032 | 1.0492 | 0.0300 | ||
790–791 | 1.0135 | 0.0008 | 1.0158 | 0.0078 |
Station | Ndata | Mean | Bias | RMSE | rBias (%) | rRMSE (%) | R2 |
---|---|---|---|---|---|---|---|
Golden | 1,295,585 | 67 | 1 | 6 | 1 | 9 | 0.95 |
Vaulx-en-Velin | 650,431 | 63 | 3 | 5 | 4 | 8 | 0.97 |
Station | Ndata | Mean | Bias | RMSE | rBias (%) | rRMSE (%) | R2 |
---|---|---|---|---|---|---|---|
Vaulx-en-Velin | 650,431 | 76 | 7 | 12 | 9 | 15 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wandji Nyamsi, W.; Blanc, P.; Dumortier, D.; Mouangue, R.; Arola, A.; Wald, L. Using Copernicus Atmosphere Monitoring Service (CAMS) Products to Assess Illuminances at Ground Level under Cloudless Conditions. Atmosphere 2021, 12, 643. https://doi.org/10.3390/atmos12050643
Wandji Nyamsi W, Blanc P, Dumortier D, Mouangue R, Arola A, Wald L. Using Copernicus Atmosphere Monitoring Service (CAMS) Products to Assess Illuminances at Ground Level under Cloudless Conditions. Atmosphere. 2021; 12(5):643. https://doi.org/10.3390/atmos12050643
Chicago/Turabian StyleWandji Nyamsi, William, Philippe Blanc, Dominique Dumortier, Ruben Mouangue, Antti Arola, and Lucien Wald. 2021. "Using Copernicus Atmosphere Monitoring Service (CAMS) Products to Assess Illuminances at Ground Level under Cloudless Conditions" Atmosphere 12, no. 5: 643. https://doi.org/10.3390/atmos12050643
APA StyleWandji Nyamsi, W., Blanc, P., Dumortier, D., Mouangue, R., Arola, A., & Wald, L. (2021). Using Copernicus Atmosphere Monitoring Service (CAMS) Products to Assess Illuminances at Ground Level under Cloudless Conditions. Atmosphere, 12(5), 643. https://doi.org/10.3390/atmos12050643