How Unusual Were June 2019 Temperatures in the Context of European Climatology?
<p>Monthly maximum air temperature in Europe, in June 2019. (<b>A</b>) Average; (<b>B</b>) Anomaly with respect to the period 1981–2010. CE, Central Europe domain and IB, Iberia and the Western Mediterranean domain.</p> "> Figure 2
<p>Magnitude of the exceedance of the previous record of (<b>A</b>) the average monthly maximum air temperature, in June 2019, and (<b>B</b>) the maximum daily air temperature, in June 2019, with respect to the period 1950–2018.</p> "> Figure 3
<p>(<b>A</b>) Total area (TA) and total intensity (TI) of individual hot days in the Central Europe domain (blue circles) and the Iberia and the Western Mediterranean domain (red squares) in June 2019 (large symbols) and in the period 1950–2018 (small symbols) along with corresponding extremity index (EI) values (black curves); (<b>B</b>) Variability of daily EI values in June 2019; (<b>C</b>) TA and (<b>D</b>) TI of individual hot days in June 2019. Blue dotted line, Central Europe domain and red solid line, Iberia and the Western Mediterranean domain.</p> "> Figure 4
<p>Frequency of occurrence of hot days (HDs) at individual grid points, in June 2019, in Europe. CE, Central Europe domain and IB, Iberia and the Western Mediterranean domain.</p> "> Figure 5
<p>(<b>A</b>–<b>F</b>) Excess of daily maximum temperature above the 95th percentile threshold noted in the Central Europe domain on subsequent days from 25 to 30 June 2019. Isolines show daily maximum temperature values.</p> "> Figure 6
<p>(<b>A</b>–<b>F</b>) Excess of daily maximum temperature above the 95th percentile threshold in the Iberia and the Western Mediterranean domain on subsequent days from 25 to 30 June 2019. Isolines show daily maximum temperature values.</p> "> Figure 7
<p>Grosswetterlagen (GWL) circulation types accompanying the highest number of hot days with EI > 1 in June. (<b>A</b>) 1950–2018; (<b>B</b>) 2019. Symbols are explained in <a href="#atmosphere-11-00697-t001" class="html-table">Table 1</a>.</p> "> Figure 8
<p>Composite pattern of sea level pressure (SLP) and 500 hPa geopotential height typical for the Groswetterlagen circulation types. (<b>A</b>) Through over Western Europe (TrW); (<b>B</b>) High over Central Europe (HM). SLP is shown in violet (light grey) and isobars use 2.5 hPa intervals. Geopotential height is shown in black and contours use 6 dam (decameters) intervals.</p> "> Figure 9
<p>Composite pattern of 500 hPa geopotential height typical for the hot days with EI > 1 occurring, in June, in 1979–2018 in (<b>A</b>) Central Europe and (<b>B</b>) Iberia and the Western Mediterranean. Contours use 6 dam (decameters) intervals. Shading indicates areas passing 1% significance test. Red (dark) shading denotes positive significant anomalies (unusually high heights) and blue (light) shading denotes significantly low heights. A rectangle marks the boundaries of the respective domain.</p> "> Figure 10
<p>Frequency of occurrence of Grosswetterlagen (GWL) circulation types, in June, in Europe in the period 1950–2018. Symbols are explained in <a href="#atmosphere-11-00697-t001" class="html-table">Table 1</a>. Colors correspond to the legend in <a href="#atmosphere-11-00697-f007" class="html-fig">Figure 7</a>; other types are marked with light grey.</p> "> Figure 11
<p>Composite pattern of 500 hPa geopotential height for the hot days with EI > 1 occurring in June 2019 in (<b>A</b>) Central Europe, and (<b>B</b>) Iberia and the Western Mediterranean. Contours use 6 dam (decameters) intervals. Shading indicates areas passing 1% significance test. Red (dark) shading denotes positive significant anomalies (unusually high heights) and blue (light) shading denotes significantly low heights. A rectangle marks the boundaries of the respective domain.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Climate Change Service: Surface Air Temperature for June 2019. Available online: https://climate.copernicus.eu/surface-air-temperature-june-2019 (accessed on 11 May 2020).
- Agencia Estatal de Meteorología. Informe Mensual Climatológico Junio de 2019. Available online: http://www.aemet.es/documentos/es/serviciosclimaticos/vigilancia_clima/resumenes_climat/mensuales/2019/res_mens_clim_2019_06.pdf (accessed on 11 May 2020).
- Deutscher Wetterdienst. Deutschlandwetter Im Jahr 2019. Available online: https://www.dwd.de/DE/presse/pressemitteilungen/DE/2019/20191230_deutschlandwetter_jahr2019_news.html?nn=16210 (accessed on 11 May 2020).
- Meteo France. Canicule: Des Records Nationaux de Températures Battus en Europe. Available online: Http://www.meteofrance.fr/actualites/73752343-canicule-des-records-nationaux-de-temperatures-battus-en-europ (accessed on 11 May 2020).
- MeteoShweiz. Rekordhitze. Available online: https://www.meteoschweiz.admin.ch/home/aktuell/meteoschweiz-blog/meteoschweiz-blog.subpage.html/de/data/blogs/2019/6/rekordhitze.html (accessed on 11 May 2020).
- Meteo France. 45,9 °C: Un Record en Questions. Available online: http://www.meteofrance.fr/actualites/73995274-45-9c-un-record-en-questions (accessed on 11 May 2020).
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Twardosz, R.; Kossowska-Cezak, U. Exceptionally hot summers in Central and Eastern Europe (1951–2010). Theor. Appl. Climatol. 2013, 112, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A review of the european summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Sánchez-Benítez, A.; García-Herrera, R.; Barriopedro, D.; Sousa, P.M.; Trigo, R.M. June 2017: The Earliest European Summer Mega-heatwave of Reanalysis Period. Geophys. Res. Lett. 2018, 45, 1955–1962. [Google Scholar] [CrossRef]
- Sousa, P.M.; Barriopedro, D.; Ramos, A.M.; García-Herrera, R.; Espírito-Santo, F.; Trigo, R.M. Saharan air intrusions as a relevant mechanism for Iberian heatwaves: The record breaking events of August 2018 and June 2019. Weather Clim. Extrem. 2019, 26, 100224. [Google Scholar] [CrossRef]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.F.S.; Ueda, K.; Ono, M.; Nitta, H.; Takami, A. Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan. Int. J. Biometeorol. 2014, 58, 941–948. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Lhotka, O.; Kyselý, J. Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. Int. J. Climatol. 2015, 35, 1232–1244. [Google Scholar] [CrossRef]
- Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Temporal variability of summer temperature extremes in Poland. Atmosphere 2017, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Czekierda, D.; Wypych, A. Extreme values of air temperature in Poland according to different atmospheric circulation classifications. Phys. Chem. Earth 2010, 35, 429–436. [Google Scholar] [CrossRef]
- Della-Marta, P.M.; Luterbacher, J.; von Weissenfluh, H.; Xoplaki, E.; Brunet, M.; Wanner, H. Summer heat waves over western Europe 1880-2003, their relationship to large-scale forcings and predictability. Clim. Dyn. 2007, 29, 251–275. [Google Scholar] [CrossRef] [Green Version]
- Stefanon, M.; Dandrea, F.; Drobinski, P. Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett. 2012, 7, 014023. [Google Scholar] [CrossRef]
- Porebska, M.; Zdunek, M. Analysis of extreme temperature events in central europe related to high pressure blocking situations in 2001–2011. Meteorol. Z. 2013, 22, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Kyselý, J. Influence of the persistence of circulation patterns on warm and cold temperature anomalies in Europe: Analysis over the 20th century. Glob. Planet. Chang. 2008, 62, 147–163. [Google Scholar] [CrossRef]
- Black, E.; Blackburn, M.; Harrison, G.; Hoskins, B.; Methven, J. Factors contributing to the summer 2003 European heatwave. Weather 2004, 59, 217–223. [Google Scholar] [CrossRef]
- Schneidereit, A.; Schubert, S.; Vargin, P.; Lunkeit, F.; Zhu, X.; Peters, D.H.W.; Fraedrich, K. Large-Scale Flow and the Long-Lasting Blocking High over Russia: Summer 2010. Mon. Weather Rev. 2012, 140, 2967–2981. [Google Scholar] [CrossRef]
- Grotjahn, R.; Black, R.; Leung, R.; Wehner, M.F.; Barlow, M.; Bosilovich, M.; Gershunov, A.; Gutkowski, W.J., Jr.; Gyakum, J.R.; Katz, R.W.; et al. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Clim. Dyn. 2010, 46, 1151–1184. [Google Scholar] [CrossRef] [Green Version]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Philipp, A.; Bartholy, J.; Beck, C.; Erpicum, M.; Esteban, P.; Fettweis, X.; Huth, R.; James, P.; Jourdain, S.; Kreienkamp, F.; et al. Cost733cat—A database of weather and circulation type classifications. Phys. Chem. Earth 2010, 35, 360–373. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A. Summer temperature extremes in Europe: How does the definition affect the results? Theor. Appl. Climatol. 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. WMO Guidelines on the Calculation of Climate Normals; WMO/TD-No. 1203; World Meteorological Organization: Geneva, Switzerland, 2017; p. 30. [Google Scholar]
- Hijmans, R.J.; van Etten, J.; Sumner, M.; Cheng, J.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Forrest, D.; Ghosh, A.; et al. Raster: Geographic Data Analysis and Modeling. R Package Version 3.0-7. Available online: https://CRAN.R-project.org/package=raster (accessed on 20 October 2019).
- Kyselý, J. Temporal fluctuations in heat waves at Prague-Klementinum, The Czech Republic, from 1901-97, and their relationships to atmospheric circulation. Int. J. Climatol. 2002, 22, 33–50. [Google Scholar] [CrossRef]
- Nairn, J.; Fawcett, R. Defining Heatwaves: Heatwave Defined as a Heat-Impact Event Servicing All Communiy and Business Sectors in Australia; CAWCR Technical Report No. 060; The Centre for Australian Weather and Climate Research—A partnership between CSIRO and the Bureau of Meteorology: Melbourne, Australia, 2013; p. 96. ISBN 9781922173126. Available online: https://www.cawcr.gov.au/static/technical-reports/CTR_060.pdf (accessed on 12 May 2020).
- Werner, P.C.; Gerstengarbe, F.W. Katalog der Großwetterlagen Europas (1881–2009) nach Paul Hess und Helmut Brezowsky; Verbesserte und Ergänzte Auflage; Postdam Institute for Climate Impact Research (PIK): Potsdam, Germany, 2010; ISBN 4933128820. [Google Scholar]
- Deutscher Wetterdienst. Großwetterlage. Available online: https://www.dwd.de/DE/leistungen/grosswetterlage/grosswetterlage.html (accessed on 12 May 2020).
- Cawley, G.C. Mean daily surface level pressure anomaly charts by Grosswetterlagen Index. Available online: http://theoval.cmp.uea.ac.uk/~gcc/projects/accord/experiments/experiment1a/node1.html (accessed on 12 May 2020).
- Hoy, A.; Jaagus, J.; Sepp, M.; Matschullat, J. Spatial response of two European atmospheric circulation classifications (data 1901–2010). Theor. Appl. Climatol. 2013, 112, 73–88. [Google Scholar] [CrossRef]
- Huth, R. Synoptic-climatological applicability of circulation classifications from the COST733 collection: First results. Phys. Chem. Earth 2010, 35, 388–394. [Google Scholar] [CrossRef]
- Wypych, A.; Ustrnul, Z.; Sulikowska, A.; Chmielewski, F.M.; Bochenek, B. Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int. J. Climatol. 2017, 37, 3340–3352. [Google Scholar] [CrossRef]
- Grotjahn, R.; Faure, G. Composite predictor maps of extraordinary weather events in the Sacramento, California, Region. Weather Forecast. 2008, 23, 313–335. [Google Scholar] [CrossRef] [Green Version]
- Kuswanto, H.; Hidayati, S.; Salamah, M.; Ulama, B.S. Bootstrap resampling to detect active zone for extreme rainfall in Indonesia. J. Phys. Conf. Ser. 2017, 893, 012031. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 2017. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 10 June 2020).
- Peña-Ortiz, C.; Barriopedro, D.; García-Herrera, R. Multidecadal variability of the summer length in Europe. J. Clim. 2015, 28, 5375–5388. [Google Scholar] [CrossRef] [Green Version]
- García, M.J.L. Recent warming in the balearic sea and Spanish Mediterranean coast. Towards an earlier and longer summer. Atmosfera 2015, 28, 149–160. [Google Scholar] [CrossRef]
- Dong, B.; Sutton, R.T.; Shaffrey, L. Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Clim. Dyn. 2017, 48, 1537–1554. [Google Scholar] [CrossRef] [Green Version]
- Cassou, C.; Cattiaux, J. Disruption of the European climate seasonal clock in a warming world. Nat. Clim. Chang. 2016, 6, 589–594. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E. Heat waves in Central Europe and their circulation conditions. Int. J. Climatol. 2016, 36, 770–782. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Pólrołniczak, M.; Bednorz, E. Circulation conditions’ effect on the occurrence of heatwaves in Western and Southwestern Europe. Atmosphere 2017, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Hernández, E. Extreme summer temperatures in Iberia: Health impacts and associated synoptic conditions. Ann. Geophys. 2005, 23, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Sulikowska, A. Heat waves in lowland Germany and their circulation-related conditions. Meteorol. Atmos. Phys. 2018, 130, 499–515. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.G.; Trigo, R.M.; Da Camara, C.C.; Pereira, J.M.C.; Leite, S.M. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 2005, 129, 11–25. [Google Scholar] [CrossRef]
GWT | No. | Symbol | Type Description | GWT | No. | Symbol | Type Description |
---|---|---|---|---|---|---|---|
West | 1 | Wa | Anticyclonic westerly | North | 16 | HB | High over British Isles |
2 | Wz | Cyclonic westerly | 17 | TrM | Trough over Central Europe | ||
3 | Ws | South-shifted cyclonic westerly | East | 18 | NEa | Anticyclonic, northeasterly | |
4 | Ww | Maritime westerly (block Eastern Europe) | 19 | NEz | Cyclonic, northeasterly | ||
Southwest | 5 | SWa | Anticyclonic southwesterly | 20 | HFa | Fennoscandian high, anticyclonic | |
6 | SWz | Cyclonic southwesterly | 21 | HFz | Fennoscandian high, cyclonic | ||
Northwest | 7 | NWa | Anticyclonic northwesterly | 22 | HNFa | Norwegian Sea-Fennoscandian high, anticyclonic | |
8 | NWz | Cyclonic northwesterly | 23 | HNFz | Norwegian Sea-Fennoscandian high, cyclonic | ||
High over CE | 9 | HM | High over Central Europe | 24 | SEa | Anticyclonic southeasterly | |
10 | BM | Zonal ridge across Central Europe | 25 | SEz | Cyclonic southeasterly | ||
Low over CE | 11 | TM | Low over Central Europe | South | 26 | Sa | Anticyclonic southerly |
North | 12 | Na | Anticyclonic northerly | 27 | Sz | Cyclonic southerly | |
13 | Nz | Cyclonic northerly | 28 | TB | Low over British Islands | ||
14 | HNa | Norwegian Sea-Iceland high, anticyclonic | 29 | TrW | Trough over Western Europe | ||
15 | HNz | Norwegian Sea-Iceland high, cyclonic | U. | 30 | U | Unclassified or transitional |
Central Europe (CE) | Iberia and the Western Mediterranean (IB) | ||||||||
---|---|---|---|---|---|---|---|---|---|
No. | Date | EI | TA | TI | No. | Date | EI | TA | TI |
1 | 26 June 2019 | 204 | 0.7 | 2.7 | 1 | 29 June 2019 | 214 | 0.8 | 2.7 |
2 | 30 June 2019 | 176 | 0.7 | 2.6 | 2 | 28 June 2019 | 209 | 0.8 | 2.6 |
3 | 24 June 2016 | 106 | 0.7 | 1.5 | 3 | 27 June 2019 | 175 | 0.7 | 2.6 |
4 | 21 June 2000 | 103 | 0.6 | 1.8 | 4 | 22 June 2003 | 110 | 0.6 | 1.7 |
5 | 22 June 2000 | 93 | 0.6 | 1.7 | 5 | 18 June 2017 | 109 | 0.7 | 1.5 |
6 | 25 June 2019 | 89 | 0.6 | 1.4 | 6 | 17 June 2017 | 104 | 0.6 | 1.7 |
7 | 20 June 2000 | 85 | 0.5 | 1.7 | 7 | 30 June 2015 | 101 | 0.6 | 1.6 |
8 | 18 June 2013 | 81 | 0.6 | 1.3 | 8 | 21 June 2003 | 100 | 0.7 | 1.5 |
9 | 19 June 2013 | 79 | 0.6 | 1.3 | 9 | 30 June 1968 | 99 | 0.7 | 1.5 |
10 | 18 June 2002 | 78 | 0.5 | 1.5 | 10 | 30 June 2019 | 97 | 0.6 | 1.6 |
Central Europe (CE) | Iberia and the Western Mediterranean (IB) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Year | EI | TA | TI | HDs | No. | Year | EI | TA | TI | HDs |
1 | 2019 | 795 | 7.6 | 16.5 | 29 | 1 | 2019 | 885 | 5.4 | 13.5 | 25 |
2 | 2000 | 407 | 4.8 | 9.6 | 24 | 2 | 2017 | 832 | 8.4 | 14.6 | 29 |
3 | 2013 | 278 | 2.9 | 5.4 | 23 | 3 | 2003 | 488 | 6.6 | 10.2 | 30 |
4 | 2002 | 259 | 3.6 | 6.2 | 26 | 4 | 2015 | 347 | 4.5 | 7.5 | 25 |
5 | 2016 | 251 | 2.9 | 5.2 | 26 | 5 | 1981 | 244 | 3.3 | 5.4 | 20 |
6 | 2003 | 247 | 5.4 | 7.6 | 30 | 6 | 2012 | 206 | 3.3 | 4.9 | 29 |
7 | 2014 | 224 | 2.4 | 4.4 | 15 | 7 | 2011 | 190 | 2.0 | 3.8 | 19 |
8 | 1996 | 194 | 3.2 | 4.2 | 19 | 8 | 2005 | 189 | 4.7 | 5.2 | 28 |
9 | 2017 | 152 | 3.3 | 4.9 | 28 | 9 | 1968 | 156 | 1.6 | 2.8 | 12 |
10 | 1968 | 139 | 2.1 | 4.0 | 21 | 10 | 2002 | 135 | 3.0 | 3.4 | 21 |
GWT | Central Europe | Iberia and the Western Mediterranean |
---|---|---|
West | 4.8 | 9.9 |
Southwest | 33.3 | 14.8 |
Northwest | 4.5 | 16.7 |
Central Europe High | 24.6 | 24.0 |
Central Europe Low | 2.2 | 0.0 |
North | 7.5 | 6.5 |
East | 12.0 | 1.5 |
South | 28.6 | 6.4 |
Undefined | 15.0 | 10.0 |
GWT | Frequency of GWT Advection Types in June in 1950–2018 | Frequency of GWT Advection Types in June 2019 |
---|---|---|
West | 25.0 | 3.3 |
Southwest | 6.4 | 16.7 |
Northwest | 6.3 | 0.0 |
Central Europe High | 15.9 | 6.7 |
Central Europe Low | 2.1 | 0.0 |
North | 19.1 | 10.0 |
East | 13.1 | 0.0 |
South | 11.1 | 56.7 |
Undefined | 1.0 | 6.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulikowska, A.; Wypych, A. How Unusual Were June 2019 Temperatures in the Context of European Climatology? Atmosphere 2020, 11, 697. https://doi.org/10.3390/atmos11070697
Sulikowska A, Wypych A. How Unusual Were June 2019 Temperatures in the Context of European Climatology? Atmosphere. 2020; 11(7):697. https://doi.org/10.3390/atmos11070697
Chicago/Turabian StyleSulikowska, Agnieszka, and Agnieszka Wypych. 2020. "How Unusual Were June 2019 Temperatures in the Context of European Climatology?" Atmosphere 11, no. 7: 697. https://doi.org/10.3390/atmos11070697
APA StyleSulikowska, A., & Wypych, A. (2020). How Unusual Were June 2019 Temperatures in the Context of European Climatology? Atmosphere, 11(7), 697. https://doi.org/10.3390/atmos11070697