Sensitivity Study on High-Resolution WRF Precipitation Forecast for a Heavy Rainfall Event
<p>Default model domains for (<b>a</b>) the 5 km outer domain indicated by the black solid rectangular box identified as s1; (<b>b</b>) the 1 km inner domain (red rectangular box identified as d02 in <a href="#atmosphere-08-00096-f001" class="html-fig">Figure 1</a>a); and (<b>c</b>) Automated Weather Station (AWS) locations with red dots and the digital elevation model (DEM) with shading (black box in <a href="#atmosphere-08-00096-f001" class="html-fig">Figure 1</a>b). White dot and black dashed rectangular boxes in (<b>a</b>) respectively indicate the domain reference grid (36° N latitude, 126° E longitude) and numerical outer domains for the sensitivity experiments. The black dot in (<b>b</b>) and white dot in (<b>c</b>) indicate the AWS location of the Seocho meteorological station (37.49° N latitude, 127.02° E longitude). Red dots in (<b>c</b>) indicate AWS sites in urban and rural areas. The solid closed curve in (<b>b</b>,<b>c</b>) represent the administrative district for Seoul.</p> "> Figure 2
<p>Weather chart provided by KMA for (<b>a</b>) 00 UTC 26 July 2011; (<b>b</b>) 12 UTC 26 July 2011; and (<b>c</b>) 00 UTC 27 July 2011.</p> "> Figure 3
<p>KMA-observed hourly accumulated rainfall at 18 UTC 26 July 2011 for (<b>a</b>) radar; (<b>b</b>) AWSs; and (<b>c</b>) meteogram of the Seocho Meteorological Station (white dot in <a href="#atmosphere-08-00096-f001" class="html-fig">Figure 1</a>c). The color bar represents the rain rate (mm/h) in (<b>a</b>,<b>b</b>). Meteorological values in the meteogram include one-hour accumulated rainfall (blue shading), 15 min accumulated rainfall (magenta shading), rain detection (sky-blue shading), temperature (red line), wind speed (green line), and wind direction (orange dots) from 00 UTC 26 July 2011 to 15 UTC 27 July 2011.</p> "> Figure 4
<p>One-hour accumulated rainfall at 18 UTC 26 July 2011 for (<b>a</b>) AWS analysis field; (<b>b</b>) 5 km outer domain part; and (<b>c</b>) 1 km inner domain. The color bar represents the rain rate (mm/h). The box in each panel indicates the region bounded by 37.3° N–37.8° N and 126.6° E–127.4° E.</p> "> Figure 5
<p>Domain-averaged hourly accumulated rainfall averaged between latitudes 37.49° N and 37.8° N, and between longitudes 126.6° E and 127.4° E for the AWS analysis field (black line), outer domain (red line), and inner domain (blue line). The horizontal axis is the forecasting time starting at 00 UTC 26 July 2011. The two ellipses indicate the first and second onsets of rainfall at the beginning of the rainfall period.</p> "> Figure 6
<p>Flowchart of the WRF sensitivity simulations. The left column is the order of the model run, and the right column shows the necessary data source incorporated into the WRF depending on the experiments shown in <a href="#atmosphere-08-00096-t002" class="html-table">Table 2</a>.</p> "> Figure 7
<p>Effect of outer domain size on the performance of the inner domain for hourly accumulated precipitation at 18 UTC 26 July 2011. (<b>a</b>) AWS rainfall analysis provided by KMA. Sensitivity results of the inner domain for (<b>b</b>) +150; (<b>c</b>) +120; (<b>d</b>) +90; (<b>e</b>) +60; (<b>f</b>) +30; (<b>g</b>) 0; (<b>h</b>) −30; and (<b>i</b>) −60, respectively, for the outer domain sizes of (s2), (s3), (s4), (s5), (s6), (s1), (s7), and (s8) in <a href="#atmosphere-08-00096-f001" class="html-fig">Figure 1</a>a. The color bar represents the rain rate (mm/h).</p> "> Figure 8
<p>SST effects of daily accumulated rainfall between 00 UTC 26 July 2011 and 00 UTC 27 July 2011 for (<b>a</b>) AWS rainfall analysis by KMA, and model SST experiments for (<b>b</b>) OSTIA, (<b>c</b>) RTG-SST, (<b>d</b>) AVHRR, (<b>e</b>) AVHRR-AMSRE, and (<b>f</b>) G1-SST. The color bar represents the rain rate (mm/day).</p> "> Figure 9
<p>Effect of the initial conditions on the daily accumulated rainfall between 00 UTC 26 July 2011 and 00 UTC 27 July 2011. (<b>a</b>) UMR (12 km); (<b>b</b>) UMG (23 km); (<b>c</b>) ECMWF-interim; (<b>d</b>) NCEP-FNL. See <a href="#atmosphere-08-00096-f007" class="html-fig">Figure 7</a>a for a comparison with the AWS rainfall analysis. The color bar represents the rain rate (mm/day).</p> "> Figure 10
<p>Lead time effect for the hourly accumulated rainfall at 18 UTC 26 July 2011, starting at (<b>a</b>) 00 UTC 26 July 2011 (+18 h); (<b>b</b>) 06 UTC 26 July 2011; (<b>c</b>) 12 UTC 26 July 2011, which respectively correspond to the lead time effect simulations of +18 h, +12 h, and +06 experiments in <a href="#atmosphere-08-00096-t002" class="html-table">Table 2</a>. The color bar represents the rain rate (mm/h). The box in each panel indicates the region bounded by 37.3° N–37.8° N and 126.6° E–127.4° E. See <a href="#atmosphere-08-00096-f005" class="html-fig">Figure 5</a>a for a comparison to the AWS rainfall analysis.</p> "> Figure 11
<p>Domain-averaged hourly rainfall calculated for the region bounded by 37.49° N to 37.8° N latitude and 126.6° E and 127.4° E longitude for the AWS analysis field (black line), default simulation started at 00 UTC (blue line), +12 simulation started at 06 UTC (red line), and +6 simulation started at 12 UTC (sky blue line).</p> ">
Abstract
:1. Introduction
2. Model Formulation
2.1. Model Configuration
2.2. Heavy Rainfall Event
2.3. Default Model Results
3. Sensitivity Results
3.1. Impact of Domain Size
3.2. Sea Surface Temperature
3.3. Initial Conditions
3.4. Lead Time Effect
3.5. Discussion
4. Summary and Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Heavy Rainfall Events Top 10 (in Korean); KMA Registered PUB, No. 11-136000-000833-01; Korea Meteorological Administration: Seoul, Korea, 2011.
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Tech. Note (NCAR/TN-475+STR); National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 125. [Google Scholar]
- Hong, S.-Y.; Park, H.; Cheong, H.-B.; Kim, J.-E.; Koo, M.-S.; Jang, J.; Ham, S.; Hwang, S.-O.; Park, B.-K.; Chang, E.-C.; et al. The global/regional integrated model system (GRIMs). Asia Pac. J. Atmos. Sci. 2013, 49, 219–243. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, H.; Chen, M.; Yang, L. Scale matching of multiscale digital elevation model (DEM) data the Weather Research and Forecasting (WRF) model: A case study of meteorological simulation in Hong Kong. Arab. J. Geosci. 2014, 7, 2215–2223. [Google Scholar] [CrossRef]
- Paviva, L.M.; Bodstein, G.C.R.; Pimentel, L.C.G. Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems. Geosci. Model Dev. 2014, 7, 1641–1659. [Google Scholar] [CrossRef]
- Nunalee, C.G.; Horváth, Á.; Basu, S. High-Resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data. Geosci. Model Dev. 2015, 8, 2645–2653. [Google Scholar] [CrossRef]
- Zheng, Y.; Alapaty, K.; Jerold, A.; Herwehe, J.A.; Del Genio, A.D.; Niyogi, D. Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme. Mon. Weather Rev. 2016, 144, 833–860. [Google Scholar] [CrossRef]
- Choi, Y.; Kang, S.-L.; Hong, J.; Grimmond, S.; Davis, K.J. A next-generation Weather Information Service Engine (WISE) customized for urban and surrounding rural areas. Bull. Am. Meteorol. Soc. 2013, 94, ES114–ES117. [Google Scholar] [CrossRef]
- Wang, X.; Steinle, P.; Seed, A.; Xiao, Y. The Sensitivity of Heavy Precipitation to Horizontal Resolution, Domain Size, and Rain Rate Assimilation: Case Studies with a Convection-Permitting Model. Adv. Meteorol. 2016, 2016, 7943845. [Google Scholar] [CrossRef]
- Dravitzki, S.; McGregor, J. Predictability of heavy precipitation in the Waikato River basin of New Zealand. Mon. Weather Rev. 2011, 139, 2184–2197. [Google Scholar] [CrossRef]
- Goswami, P.; Shivappa, H.; Goud, S. Comparative analysis of the role of domain size, horizontal resolution and initial conditions in the simulation of tropical heavy rainfall events. Meteorol. Appl. 2012, 19, 170–178. [Google Scholar] [CrossRef]
- Goswami, P.; Mohapatra, G.N. A comparative evaluation of impact of domain size and parameterization scheme on simulation of tropical cyclones in the Bay of Bengal. J. Geophys. Res. Atmos. 2014, 119, 10–22. [Google Scholar] [CrossRef]
- Li, Y.; Lu, G.; Wu, Z.; He, H.; Shi, J.; Ma, Y.; Weng, S. Evaluation of Optimized WRF Precipitation Forecast over a Complex Topography Region during Flood Season. Atmosphere 2016, 7, 145. [Google Scholar] [CrossRef]
- Ha, J.-C.; Lee, Y.-H.; Lee, H.C.; Nam, J.-E.; Lee, J.S. The Operational Manual of Korea Local Analysis and Prediction System; NIMR-TN-2011-006; National Institute of Meteorological Research: JeJu, Korea, 2011; 55p.
- Kim, E.-H.; Ahn, K.-D.; Lee, H.-C.; Ha, H.-C.; Lim, E. A study on the effect of ground-based GPS data assimilation into very-short-range prediction model. Atmosphere 2015, 25, 623–637, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Jee, J.-B.; Kim, S. Sensitivity Study on High-Resolution Numerical Modeling of Static Topographic Data. Atmosphere 2016, 7, 86. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Lim, K.-S.S.; Hong, S.-Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Boulder, CO, USA, 10–12 January 2004; pp. 11–15. [Google Scholar]
- Chou, M.D.; Suarez, M.J. A Solar Radiation Parameterization for Atmospheric Studies; Technical Report Series on Global Modeling and Data Assimilation; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999.
- Lee, D.-K.; Kim, H.-R.; Hong, S.-Y. Heavy rainfall over Korea during 1980–1990. Korean J. Atmos. Sci. 1998, 1, 32–50. [Google Scholar]
- Rha, D.-K.; Kwak, C.-H.; Suh, M.-S.; Hong, Y. Analysis of the characteristics of precipitation over South Korea in terms of the associated synoptic patterns: A 30 years climatology (1973–2002). J. Korean Earth Sci. Soc. 2005, 26, 732–743, (In Korean with English Abstract). [Google Scholar]
- Sun, J.; Lee, T.-Y. A numerical study of an intense quasistationary convection band over the Korean peninsula. J. Meteorol. Soc. Jpn. 2002, 80, 1221–1245. [Google Scholar] [CrossRef]
- Jang, J.; Hong, S.-Y. Quantitative forecast experiment of a heavy rainfall event over Korea in a global model: Horizontal resolution versus lead time issues. Meteorol. Amos. Phys. 2014, 124, 113–127. [Google Scholar] [CrossRef]
- Ebert, E.E.; Damrath, U.; Wergen, W.; Baldwin, M.E. The WGNE assessment of short-term quantitative precipitation forecasts. Bull. Am. Meteorol. Soc. 2003, 84, 481–492. [Google Scholar] [CrossRef]
- Bhaskaran, B.; Ramachandran, A.; Jones, R.; Moufouma-Okia, W. Regional climate model applications on sub-regional scales over the Indian monsoon region: The role of domain size on downscaling uncertainty. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Manda, A.; Nakamura, H.; Asano, N.; Iizuka, S.; Miyama, T.; Moteki, O.; Yoshioka, M.K.; Nishii, K.; Miyasaka, T. Impacts of a warming marginal sea on torrential rainfall organized under the Asian summer monsoon. Sci. Rep. 2014, 4, 5741. [Google Scholar] [CrossRef] [PubMed]
- Mittermaier, M.P. Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Q. J. R. Meteorol. Soc. 2007, 133, 1487–1500. [Google Scholar] [CrossRef]
- Ebert, E.E. Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework. Meteorol. Appl. 2008, 15, 51–64. [Google Scholar] [CrossRef]
- Etherton, B.; Santos, P. Sensitivity of WRF Forecasts for South Florida to Initial conditions. Weather Forecast. 2008, 23, 725–740. [Google Scholar] [CrossRef]
- Min, J.-S.; Rho, J.-W.; Jee, J.-B.; Kim, S. A study on sensitivity of heavy precipitation to domain size with a regional numerical weather prediction model. Atmosphere 2016, 26, 85–95. [Google Scholar] [CrossRef]
- Sikder, S.; Hossain, F. Assessment of the weather research and forecasting model generalized parameterization schemes for advancement of precipitation forecasting in monsoon-driven river basins. J. Adv. Model. Earth Syst. 2016, 8, 1210–1228. [Google Scholar] [CrossRef]
Configuration | Outer Domain | Inner Domain |
---|---|---|
WRF version | 3.6.1 | |
Horizontal grids | 332 × 293 | 336 × 286 |
Grid spacing (km) | 5 | 1 |
Integration time (s) | 30 | 6 |
Cumulus | Cumulus Parameterization Scheme (CPS) | N/A |
Vertical grid | 50 layer/Top 50 hPa | |
Radiation | Goddard longwave/shortwave scheme; Integration time: 10 min | |
Microphysics | WRF Single-Moment 6-class | |
Surface layer | Monin-Obukhov (Janjic) scheme | |
Land surface | Unified Noah Land Surface Model | |
Planetary boundary layer | Mellor-Yamada-Jankic turbulent kinetic energy (TKE) scheme; Integration time: 5 min/each time | |
Initial boundary condition | UM Regional Model Forecast Field (12 km resolution, KMA) | |
Sea Surface Temperature | Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) | |
Land use and topography data | 30s/USGS 33cat |
Experiment | Domain Size | SST Data | Initial Condition | Lead Time |
---|---|---|---|---|
Simulation 1 default | 0 | OSTIA (5 km) | UMR (12 km) | +18 h |
Simulation 2 | +150 | RTG-SST (900 m) | UMG (23 km) | +12 h |
Simulation 3 | +120 | AVHRR (1 km) | ECMWF interim (25 km) | +06 h |
Simulation 4 | +90 | AVHRR-AMSRE (1 km) | NCEP FNL (100 km) | |
Simulation 5 | +60 | G1-SST (1 km) | ||
Simulation 6 | +30 | |||
Simulation 7 | −30 | |||
Simulation 8 | −60 |
Domain Size | SST | I/C | Lead Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Simulation | POD | FAR | ETS | POD | FAR | ETS | POD | FAR | ETS | POD | FAR | ETS |
S1 default | 0.86 | 0.28 | 0.33 | 0.86 | 0.28 | 0.33 | 0.86 | 0.28 | 0.33 | 0.86 | 0.28 | 0.33 |
S2 | 0.71 | 0.31 | 0.28 | 0.83 | 0.28 | 0.31 | 0.55 | 0.34 | 0.14 | 0.88 | 0.28 | 0.32 |
S3 | 0.82 | 0.27 | 0.31 | 0.83 | 0.27 | 0.31 | 0.56 | 0.33 | 0.14 | 0.90 | 0.25 | 0.35 |
S4 | 0.84 | 0.28 | 0.31 | 0.84 | 0.27 | 0.31 | 0.86 | 0.28 | 0.36 | |||
S5 | 0.84 | 0.28 | 0.32 | |||||||||
S6 | 0.83 | 0.29 | 0.32 | |||||||||
S7 | 0.82 | 0.28 | 0.33 | |||||||||
S8 | 0.85 | 0.29 | 0.34 |
Domain Size | SST | I/C | Lead Time | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | CC | BIAS | RMSE | CC | BIAS | RMSE | CC | BIAS | RMSE | CC | BIAS | RMSE | |
S1 default | T2 | 0.55 | 2.06 | 2.94 | 0.59 | 1.40 | 2.54 | 0.58 | 1.01 | 2.36 | 0.58 | 1.08 | 2.36 |
WS10 | 0.10 | 2.78 | 3.53 | 0.20 | 2.79 | 3.47 | 0.14 | 2.69 | 3.44 | 0.14 | 2.69 | 3.44 | |
Rh | 0.12 | −5.43 | 11.04 | 0.23 | −5.13 | 13.08 | 0.17 | −5.68 | 13.22 | 0.17 | −5.68 | 13.22 | |
S2 | T2 | 0.57 | 2.12 | 2.94 | 0.58 | 2.17 | 3.16 | 0.58 | 1.23 | 2.45 | 0.58 | 1.23 | 2.45 |
WS10 | 0.15 | 3.35 | 3.87 | 0.13 | 2.74 | 3.35 | 0.10 | 2.57 | 3.76 | 0.10 | 2.57 | 3.35 | |
Rh | 0.16 | −6.57 | 11.34 | 0.21 | −5.15 | 13.02 | 0.11 | −5.28 | 14.57 | 0.11 | −5.28 | 13.57 | |
S3 | T2 | 0.56 | 2.06 | 2.88 | 0.58 | 1.79 | 2.82 | 0.43 | 1.89 | 2.92 | 0.59 | 1.28 | 2.42 |
WS10 | 0.12 | 3.24 | 3.79 | 0.13 | 2.35 | 3.06 | 0.14 | 2.96 | 3.76 | 0.11 | 2.62 | 3.36 | |
Rh | 0.07 | −6.37 | 12.61 | 0.19 | −5.14 | 13.18 | 0.08 | −6.80 | 13.49 | 0.16 | −5.58 | 13.35 | |
S4 | T2 | 0.53 | 1.88 | 2.92 | 0.58 | 1.84 | 2.88 | 0.43 | 1.89 | 2.92 | |||
WS10 | 0.13 | 2.73 | 3.51 | 0.14 | 2.36 | 3.07 | 0.14 | 2.96 | 3.76 | ||||
Rh | −0.03 | −3.85 | 13.27 | 0.25 | −5.19 | 12.70 | 0.08 | −6.80 | 13.49 | ||||
S5 | T2 | 0.49 | 1.86 | 3.00 | |||||||||
WS10 | 0.11 | 2.60 | 3.42 | ||||||||||
Rh | −0.02 | −4.75 | 12.24 | ||||||||||
S6 | T2 | 0.54 | 2.22 | 3.05 | |||||||||
WS10 | 0.12 | 2.32 | 3.16 | ||||||||||
Rh | 0.05 | −5.61 | 12.91 | ||||||||||
S7 | T2 | 0.59 | 1.83 | 2.72 | |||||||||
WS10 | 0.14 | 2.88 | 3.63 | ||||||||||
Rh | 0.25 | −4.02 | 12.34 | ||||||||||
S8 | T2 | 0.62 | 1.56 | 2.63 | |||||||||
WS10 | 0.12 | 3.57 | 4.28 | ||||||||||
Rh | 0.26 | 2.80 | 15.70 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jee, J.-B.; Kim, S. Sensitivity Study on High-Resolution WRF Precipitation Forecast for a Heavy Rainfall Event. Atmosphere 2017, 8, 96. https://doi.org/10.3390/atmos8060096
Jee J-B, Kim S. Sensitivity Study on High-Resolution WRF Precipitation Forecast for a Heavy Rainfall Event. Atmosphere. 2017; 8(6):96. https://doi.org/10.3390/atmos8060096
Chicago/Turabian StyleJee, Joon-Bum, and Sangil Kim. 2017. "Sensitivity Study on High-Resolution WRF Precipitation Forecast for a Heavy Rainfall Event" Atmosphere 8, no. 6: 96. https://doi.org/10.3390/atmos8060096
APA StyleJee, J.-B., & Kim, S. (2017). Sensitivity Study on High-Resolution WRF Precipitation Forecast for a Heavy Rainfall Event. Atmosphere, 8(6), 96. https://doi.org/10.3390/atmos8060096