Active Vibration Control of Rib Stiffened Plate by Using Decentralized Velocity Feedback Controllers with Inertial Actuators
<p>Systemic model: (<b>a</b>) active orthogonally rib stiffened plate; (<b>b</b>) the coupling effects between the base plate and the rib for the vertical rib; (<b>c</b>) the coupling effects for the horizontal rib.</p> "> Figure 2
<p>The sketch of the decentralized system.</p> "> Figure 3
<p>The arrangement of the feedback loops.</p> "> Figure 4
<p>Schematic of the inertial actuator. (<b>a</b>) Schematic of a concept inertial actuator; (<b>b</b>) inertial actuator model.</p> "> Figure 5
<p>The block diagram of the closed-loop system.</p> "> Figure 6
<p>The locations and coordinates of the feedback loops.</p> "> Figure 7
<p>The kinetic energy of the ribbed plate before and after control using seven feedback loops with different control gain.</p> "> Figure 8
<p>The radiated sound power of the ribbed plate before and after control using seven feedback loops with different control gain.</p> "> Figure 9
<p>The kinetic energy of the ribbed plate before and after control with different number of feedback loops.</p> "> Figure 10
<p>The radiated sound power of the ribbed plate before and after control with different number of feedback loops.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Theoretical Modeling
2.1. Vibrating Response of the Ribbed Plate with Point Control Force
2.2. Decentralized Feedback Controllers with Inertial Actuators
3. Results and Discussion
3.1. Parameters of the Model
3.2. Active Control with Decentralized Velocity Feedback Controllers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dozio, L.; Ricciardi, M. Free vibration analysis of ribbed plates by a combined analytical-numerical method. J. Sound Vib. 2009, 319, 681–697. [Google Scholar] [CrossRef]
- Gardonio, P.; Elliott, S.J. Active control of structure-borne and airborne sound transmission through double panel. J. Aircraft 1999, 36, 1023–1032. [Google Scholar] [CrossRef]
- Bravo, T.; Maury, C. Sound attenuation and absorption by micro-perforated panels backed by anisotropic fibrous materials: Theoretical and experimental study. J. Sound Vib. 2018, 425, 189–207. [Google Scholar] [CrossRef]
- Bravo, T.; Maury, C.; Pinhede, C. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate. J. Acoust. Soc. Am. 2012, 131, 3853–3863. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, L. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. J. Acoust. Soc. Am. 2011, 130, 208–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Li, D.; Cheng, L. Dynamic vibration absorbers for vibration control within a frequency band. J. Sound Vib. 2011, 330, 1582–1598. [Google Scholar] [CrossRef] [Green Version]
- Pietrzko, S.J.; Mao, Q. New results in active and passive control of sound transmission through double wall structures. Aerosp. Sci. Technol. 2008, 12, 42–53. [Google Scholar] [CrossRef]
- Sanada, A.; Tanaka, N. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point force actuators. J. Acoust. Soc. Am. 2012, 132, 767–778. [Google Scholar] [CrossRef]
- Aslani, P.; Sommerfeldt, S.D.; Blotter, J.D. Active control of simply supported cylindrical shells using the weighted sum of spatial gradients control metric. J. Acoust. Soc. Am. 2018, 143, 271–280. [Google Scholar] [CrossRef]
- Meymian, N.Z.; Clark, N.; Subramanian, J.; Heiskell, G.; Johnson, D.; Mahmudzadeh, F.; Darzi, M.; Musho, T.; Famouri, P. Quantification of windage and vibrational losses in flexure springs of a one kW two-stroke free piston liner engine alternator. SEA Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Parkar, I.; Bayat, M. Analytical study on the non-liner vibration of Euler-Bernoulli beams. J. Vibroeng. 2012, 14, 216–224. [Google Scholar]
- Chang, Y.; Noormohamed, A.; Mercan, O. Analytical and experimental investigations of modified tuned liquid dampers. J. Sound Vib. 2018, 428, 179–194. [Google Scholar] [CrossRef]
- Mirafzal, S.H.; Khorasani, A.M.; Ghasemi, A.H. Optimizing time delay feedback for active vibration control of a cantilever beam using a genetic algorithm. J. Vib. Control 2016, 22, 4047–4061. [Google Scholar] [CrossRef]
- Pan, J.; Bao, C. Analytical study of different approaches for active control of sound transmission through double walls. J. Acoust. Soc. Am. 1998, 103, 1916–1922. [Google Scholar] [CrossRef]
- Bao, C.; Pan, J. Experimental study of different approaches for active control of sound transmission through double walls. J. Acoust. Soc. Am. 1997, 102, 1664–1670. [Google Scholar] [CrossRef]
- Ma, X.; Chen, K.; Ding, S.; Zhang, B. Some physical insights for active control of sound radiated from a clamped ribbed plate. Appl. Acoust. 2015, 99, 1–7. [Google Scholar] [CrossRef]
- Ma, X.; Chen, K.; Ding, S.; Yu, H. Physical mechanism of active control of sound transmission through rib stiffened double-panel structure. J. Sound Vib. 2016, 371, 2–18. [Google Scholar] [CrossRef]
- Charette, F.; Berry, A.; Guigou, C. Active control of sound radiation from a plate using a polyvinylidene fluoride volume displacement sensor. J. Acoust. Soc. Am. 1998, 103, 1493–1503. [Google Scholar] [CrossRef]
- Clark, R.L.; Fuller, C.R. Modal sensing of efficient acoustic radiators with polyvinylidene fluoride distributed sensors in active structural acoustic control approaches. J. Acoust. Soc. Am. 1992, 91, 3321–3329. [Google Scholar] [CrossRef]
- Elliott, S.J.; Gardonio, P.; Thomas, T.C.; Brennan, M.J. Active vibroacoustic control with multiple local feedback loops. J. Acoust. Soc. Am. 2002, 111, 908–915. [Google Scholar] [CrossRef]
- Gardonio, P.; Bianchi, E.; Elliott, S.J. Smart panel with multiple decentralized units for the control of sound transmission. Part I: Theoretical predictions. J. Sound Vib. 2004, 274, 163–192. [Google Scholar] [CrossRef]
- Gardonio, P.; Bianchi, E.; Elliott, S.J. Smart panel with multiple decentralized units for the control of sound transmission. Part II: Design of the decentralized control units. J. Sound Vib. 2004, 274, 193–213. [Google Scholar] [CrossRef]
- Bianchi, E.; Gardonio, P.; Elliott, S.J. Smart panel with multiple decentralized units for the control of sound transmission. Part III: Control system implementation. J. Sound Vib. 2004, 274, 215–232. [Google Scholar] [CrossRef]
- Aoki, Y.; Gardonio, P.G.; Elliott, S.J. Rectangular plate with velocity feedback loops using triangularly shaped piezoceramic actuators: Experimental control performance. J. Acoust. Soc. Am. 2008, 123, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Díaz, C.G.; Paulitsch, C.; Gardonio, P. Active damping control unit using a small-scale proof mass electrodynamic actuator. J. Acoust. Soc. Am. 2008, 124, 886–897. [Google Scholar] [CrossRef]
- Díaz, C.G.; Paulitsch, C.; Gardonio, P. Smart panel with active damping units. Implementation of decentralized control. J. Acoust. Soc. Am. 2008, 124, 898–910. [Google Scholar] [CrossRef] [PubMed]
- Baumann, O.N.; Elliot, S.J. The stability of decentralized multichannel velocity feedback controllers using inertial actuators. J. Acoust. Soc. Am. 2007, 121, 188–196. [Google Scholar] [CrossRef]
- Carneal, J.P.; Fuller, C.R. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems. J. Sound Vib. 2004, 272, 749–771. [Google Scholar] [CrossRef]
- Lin, T.; Pan, J. A closed form solution for the dynamic response of finite ribbed plates. J. Acoust. Soc. Am. 2006, 119, 917–925. [Google Scholar] [CrossRef]
Geometrical Parameters | Value | Material Properties | Value |
---|---|---|---|
The length and width of the base plate | m m | The material of the base plate and the ribs | aluminum |
The thickness of the base plate | m | The density of aluminum | kg/m3 |
The locations of the vertical and horizontal ribs | 0.6 m 0.45 m | The Young’s modulus of aluminum | N/m2 |
The size of the rectangular cross section of the ribs (wide × high) | m2 | The Poisson’s ratio of aluminum | |
The primary excitation | Pa | The density of air | kg/m3 |
The sound speed of air | m/s |
Property | Value |
---|---|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Wang, L.; Xu, J. Active Vibration Control of Rib Stiffened Plate by Using Decentralized Velocity Feedback Controllers with Inertial Actuators. Appl. Sci. 2019, 9, 3188. https://doi.org/10.3390/app9153188
Ma X, Wang L, Xu J. Active Vibration Control of Rib Stiffened Plate by Using Decentralized Velocity Feedback Controllers with Inertial Actuators. Applied Sciences. 2019; 9(15):3188. https://doi.org/10.3390/app9153188
Chicago/Turabian StyleMa, Xiyue, Lei Wang, and Jian Xu. 2019. "Active Vibration Control of Rib Stiffened Plate by Using Decentralized Velocity Feedback Controllers with Inertial Actuators" Applied Sciences 9, no. 15: 3188. https://doi.org/10.3390/app9153188
APA StyleMa, X., Wang, L., & Xu, J. (2019). Active Vibration Control of Rib Stiffened Plate by Using Decentralized Velocity Feedback Controllers with Inertial Actuators. Applied Sciences, 9(15), 3188. https://doi.org/10.3390/app9153188