A Geometric Error Measurement System for Linear Guideway Assembly and Calibration
<p>System optical arrangement.</p> "> Figure 2
<p>The optical path of altitude angle calibration. (<b>a</b>) The tolerance error of the commercial laser interferometer and (<b>b</b>) the proposed module based on the autocollimator principle could reduce the tolerance error of the commercial laser interferometer.</p> "> Figure 3
<p>The in-lab-developed module for altitude angle calibration.</p> "> Figure 4
<p>Schematic diagram of the straightness module.</p> "> Figure 5
<p>Schematic diagram of the perpendicularity module.</p> "> Figure 6
<p>Beam path of perpendicularity measurement.</p> "> Figure 7
<p>Schematic diagram of the parallelism module.</p> "> Figure 8
<p>Beam path of parallelism measurement.</p> "> Figure 9
<p>Vertical setup error of the laser source.</p> "> Figure 10
<p>Position sensing detector (PSD) setup error.</p> "> Figure 11
<p>Vertical setup error of the pentaprism.</p> "> Figure 12
<p>Schematic diagram of the pentaprism setup error detection.</p> "> Figure 13
<p>Verification setup of straightness measurement.</p> "> Figure 14
<p>Results of horizontal straightness measurement.</p> "> Figure 15
<p>Results of vertical straightness measurement.</p> "> Figure 16
<p>Verification setup of perpendicularity measurement using a square block.</p> "> Figure 17
<p>Verification setup of perpendicularity measurement using the proposed system.</p> "> Figure 18
<p>Verification setup of parallelism measurement using a square block.</p> "> Figure 19
<p>Verification setup of parallelism measurement using the proposed system: (<b>a</b>) Reference axis and (<b>b</b>) follower axis.</p> "> Figure 20
<p>Case 1 straightness error measurement setup.</p> "> Figure 21
<p>Case 2 straightness error measurement setup on double column machine tool, (<b>a</b>) the double column machine tool and (<b>b</b>) the setup of 5529A laser interferometer straightness module and proposed system.</p> "> Figure 22
<p>Case 3 perpendicular error measurement setup. (<b>a</b>) The Automated optical inspection (AOI) equipment to be measured, (<b>b</b>) the inspection square (triangular) measurement setup, (<b>c</b>) the Y1┴X measurement setup of proposed system, and (<b>d</b>) the Y2┴X measurement setup of proposed system.</p> "> Figure 23
<p>Case 4 parallelism error measurement setup.</p> ">
Abstract
:1. Introduction
2. Measurement Principles
2.1. Pentaprism Module
2.2. Straightness Measurement Module
2.3. Perpendicularity Measurement Module
2.4. Parallelism Measurement Module
3. Uncertainty Analysis
3.1. Laser Source Setup
3.2. PSD Setup
3.3. Pentaprism Setup
4. System Verification
4.1. Altitude Angle between Laser Source and Pentaprism
4.2. Straightness Measurement
4.3. Perpendicularity Measurement
4.4. Parallelism Measurement
4.5. Application of Proposed System
5. Conclusions
- (a)
- There is no need to reset the system if the laser source is sheltered during the measurement process;
- (b)
- The horizontal and vertical straightness errors can be obtained in one measurement;
- (c)
- The system is capable of applying to the linear guideway assembly process of various double-column, three-axis, and five-axis machine tools;
- (d)
- The residual error of the horizontal straightness, vertical straightness, perpendicularity, and parallelism are found to be ±1.3 µm, ±5.3 µm, ±1.2 µm, and ±0.1 µm, respectively, which are better compared to those detected by the commercial laser interferometer and granite reference blocks.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sommargren, G.E. Linear/Angular Displacement Interferometer for Wafer Stage Metrology. Proc. SPIE 1989, 1088, 268–273. [Google Scholar]
- Nakamura, O.; Goto, M. Four-beam laser interferometry for three-dimensional microscopic coordinate measurement. Appl. Opt. 1994, 33, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Kim, S.-W. An ultraprecision stage for alignment of wafers in advanced microlithography. Precis. Eng. 1997, 21, 113–122. [Google Scholar] [CrossRef]
- Menq, C.H.; Zhang, J.H.; Shi, J. Design and development of an interferometer with improved angular tolerance and its application to x-y theta measurement. Rev. Sci. Instrum. 2000, 71, 4633–4638. [Google Scholar] [CrossRef]
- Zhang, Z.; Menq, C.H. Laser interferometric system for six-axis motion measurement. Rev. Sci. Instrum. 2007, 78, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Jywe, W.-Y.; Jeng, Y.-R.; Hsu, T.-H.; Li, Y.-t. Design and control of a long-traveling nano-positioning stage. Precis. Eng. 2010, 34, 497–506. [Google Scholar] [CrossRef]
- Ni, J.; Huang, P.S.; Wu, S.M. A Multi-Degree-of-Freedom Measuring System for CMM Geometric Errors. J. Eng. Ind. 1992, 114, 362–369. [Google Scholar]
- Huang, P.S.; Ni, J. On-line error compensation of coordinate measuring machines. Int. J. Mach. Tools Manuf. 1995, 35, 725–738. [Google Scholar] [CrossRef]
- Shimizu, S.; Lee, H.S.; Imai, N. Simultaneous Measuring Method of Table Motion Error in 6 Degrees of Freedom. Int. J. Jpn. Soc. Precis. Eng. 1994, 28, 273–274. [Google Scholar]
- Chou, C.; Chou, L.-Y.; Peng, C.-K.; Huang, Y.-C.; Fan, K.-C. CCD-based CMM Geometrical error measurement using fourier phase shift algorithm. Int. J. Mach. Tools Manuf. 1997, 37, 579–590. [Google Scholar] [CrossRef]
- Fan, K.C.; Chen, M.J.; Huang, W.M. A six-degree-of-freedom measurement system for the motion accuracy of linear stages. Int. J. Mach. Tools Manuf. 1998, 38, 155–164. [Google Scholar] [CrossRef]
- Fan, K.-C.; Chen, M.-J. A 6-degree-of-freedom measurement system for the accuracy of X-Y stages. Precis. Eng. 2000, 24, 15–23. [Google Scholar] [CrossRef]
- Jywe, W.; Chen, C.J.; Hsieh, W.H.; Lin, P.D.; Jwo, H.H.; Yang, T.Y. A novel simple and low cost 4 degree of freedom angular indexing calibrating technique for a precision rotary table. Int. J. Mach. Tools Manuf. 2007, 47, 1978–1987. [Google Scholar] [CrossRef]
- You, F.-L.; Feng, Q.-B.; Zhang, B. Straightness error measurement based on common-path compensation for laser beam drift. Opt. Precis. Eng. 2011, 3, 004. [Google Scholar]
- Jywe, W.; Hsu, T.-H.; Liu, C.H. Non-bar, an optical calibration system for five-axis CNC machine tools. Int. J. Mach. Tools Manuf. 2012, 59, 16–23. [Google Scholar] [CrossRef]
- Huang, P.; Li, Y.; Wei, H.; Ren, L.; Zhao, S. Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique. Appl. Opt. 2013, 52, 6607–6615. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.Y.; Xu, B.; Yan, L.P.; Zhang, E.Z.; Liu, Y.N. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters. Opt. Express 2015, 23, 9052–9073. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.H.; Jywe, W.Y.; Chen, S.L.; Liu, C.H.; Huang, H.L. Note: Development of a high resolution six-degrees-of-freedom optical vibrometer for precision stage. Rev. Sci. Instrum. 2011, 82, 056101. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Arai, Y.; Shibuya, A.; Kiyono, S.; Park, C.H. Measurement of multi-degree-of-freedom error motions of a precision linear air-bearing stage. Precis. Eng. 2006, 30, 96–103. [Google Scholar] [CrossRef]
1000 | 0.1 | 0.5 |
1000 | 0.5 | 2.4 |
1000 | 1 | 4.8 |
100 | 0.5 | 0.004 |
100 | 1 | 0.015 |
100 | 5 | 0.382 |
Altitude Angle Error | Pitch (arcsec) | Standard Deviation (arcsec) | |||||
---|---|---|---|---|---|---|---|
Errors on PSD | 0 | 10 | 20 | 50 | 100 | ||
Pitch (arcsec) | 0 | 0.76 | 0.70 | 4.19 | 6.15 | ±2.3 | |
Yaw (arcsec) | 1.67 | 2.43 | 1.95 | 2.81 | ±0.4 |
Measurement Distance (mm) | Commercial Instrument/Tool | Proposed System | ||||
---|---|---|---|---|---|---|
Straightness (Horizontal) | 1000 | 7.2 | ±0.2 | 8.2 | ±0.5 | 1.3 |
Straightness (Vertical) | 5.3 | ±0.3 | 9.2 | ±1.7 | 5.3 | |
Perpendicularity | 400 | 4.0 | ±0.8 | 2.7 | ±0.9 | 1.2 |
Parallelism | 400 | 11.3 | ±0.5 | 11.2 | ±0.5 | 0.1 |
Straightness Error (Horizontal) | Straightness Error (Vertical) | |
---|---|---|
ProLine | 16 μm | 16 μm |
Proposed system | 13.97 μm | 11.21 μm |
Straightness Error (Horizontal) | Straightness Error (Vertical) | |
---|---|---|
5529A | 34 μm | 24 μm |
Proposed system | 36 μm | 28 μm |
Two-Axis Perpendicularity Displacement Error | Two-Axis Perpendicularity Angle Error | |
---|---|---|
Inspection square (triangular) | 5 μm/1.1 m | N/A |
Proposed system Y1┴X | 14.3 μm/1.1 m | 2.68 arcsec |
Proposed system Y2┴X | 14.1 μm/1.1 m | −2.66 arcsec |
Parallelism Angle Error | Parallelism Displacement Error | |
---|---|---|
Company | 3.3 arcsec | 16 um/1.6 m |
Proposed system | 1.09 arcsec | 5.29 um/ 1.6 m |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, T.-H.; Chen, P.-Y.; Jywe, W.-Y.; Chen, G.-W.; Wang, M.-S. A Geometric Error Measurement System for Linear Guideway Assembly and Calibration. Appl. Sci. 2019, 9, 574. https://doi.org/10.3390/app9030574
Hsieh T-H, Chen P-Y, Jywe W-Y, Chen G-W, Wang M-S. A Geometric Error Measurement System for Linear Guideway Assembly and Calibration. Applied Sciences. 2019; 9(3):574. https://doi.org/10.3390/app9030574
Chicago/Turabian StyleHsieh, Tung-Hsien, Po-Yu Chen, Wen-Yuh Jywe, Guan-Wu Chen, and Ming-Shi Wang. 2019. "A Geometric Error Measurement System for Linear Guideway Assembly and Calibration" Applied Sciences 9, no. 3: 574. https://doi.org/10.3390/app9030574
APA StyleHsieh, T.-H., Chen, P.-Y., Jywe, W.-Y., Chen, G.-W., & Wang, M.-S. (2019). A Geometric Error Measurement System for Linear Guideway Assembly and Calibration. Applied Sciences, 9(3), 574. https://doi.org/10.3390/app9030574