Long-Term Effects of a Soft Robotic Suit on Gait Characteristics in Healthy Elderly Persons
<p>Entire design of a soft wearable robotic suit for hip flexion.</p> "> Figure 2
<p>Assistance strategy for hip flexion. Blue-filled circles express reflective markers attached to the subjects in the experiment of <a href="#sec3-applsci-09-01957" class="html-sec">Section 3</a> (1. approximation of the center of mass, 2. hip, 3. knee, 4. ankle, and 5. toe).</p> "> Figure 3
<p>Control architecture of the robotic suit.</p> "> Figure 4
<p>Measured hip angle and generated assistive force.</p> "> Figure 5
<p>Protocol of each experimental day. PON, powered on; POFF, powered off.</p> "> Figure 6
<p>Comparison of average maximum joint angles of each week between the POFF condition and the PON condition. Here, flex.: flexion, ext.:extension, d.f.: dorsiflexion, and p.f.: plantar flexion.</p> "> Figure 7
<p>Comparison of joint angles achieved in the POFF condition between Week 1 and Week 6. On each graph, the solid curve represents the average value, and the shadowed region denotes one standard deviation.</p> "> Figure 8
<p>Comparison of maximum joint angles achieved in the POFF condition between Week 1 and Week 6. Here, flex.: flexion, ext.:extension, d.f.: dorsiflexion, and p.f.: plantar flexion. On each bar chart, the error bar denotes one standard deviation.</p> "> Figure 9
<p>Comparison of the average walk ratio of each week between the POFF condition and the PON condition.</p> "> Figure 10
<p>Comparison of the average walk ratio between the POFF condition and the PON condition. On each bar chart, the error bar denotes one standard deviation.</p> "> Figure 11
<p>Comparison of the walk ratio of each subject achieved in the POFF condition between Week 1 and Week 6.</p> "> Figure 12
<p>Comparison of the walk ratio achieved in the POFF condition between Week 1 and Week 6. On each bar chart, the error bar denotes one standard deviation.</p> "> Figure 13
<p>Comparison of the typical motions of the POFF condition around the timings of the toe off and the heel contact between Week 1 and Week 6.</p> ">
Abstract
:1. Introduction
2. Overview of a Soft Wearable Robotic Suit
3. Experiment
3.1. Subjects
3.2. Protocol
3.3. Data Analysis
4. Results
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Population Fund. Aging. 2015. Available online: Http://www.unfpa.org/ageing (accessed on 13 May 2019).
- Herrmann, M.; Guzman, J.M.; Juran, S.; Schensul, D. Population Dynamics in the Least Developed Countries: Challenges and Opportunities for Development and Poverty Reduction. 2011. Available online: http://www.unfpa.org/publications/population-dynamics-ldcs (accessed on 13 May 2019).
- Prince, F.; Corriveau, H.; Hebert, R.; Winter, D. Gait in the elderly. Gait Posture 1997, 5, 128–135. [Google Scholar] [CrossRef]
- DeVita, P.; Hortobagyi, T. Age causes a redistribution of joint torques and powers during gait. J. Appl. Physiol. 2000, 88, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Watelain, E.; Barbier, F.; Allard, P.; Thevenon, A.; Angue, J. Gait pattern classification of healthy elderly men based on biomechanical data. Arch. Phys. Med. Rehabil. 2000, 81, 579–586. [Google Scholar] [CrossRef]
- Menz, H.; Lord, S.; Fitzpatrick, C. Age-related differences in walking stability. Age Ageing 2003, 32, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkwood, R.; Moreira, B.; Vallone, M.; Mingoti, S.; Dias, R.; Sampaio, R. Step length appears to be a strong discriminant gait parameter for elderly females highly concerned about falls: A cross-sectional observational study. Physiotherapy 2011, 97, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, K.; Shimada, K.; Koyama, T.; Ido, T.; Kikuchi, K.; Endo, Y. Walking assist device with stride management assist. Honda R&D Techn. Rev. 2009, 21, 54–62. [Google Scholar]
- Kawamoto, H.; Hayashi, T.; Sakurai, T.; Eguchi, K.; Sankai, Y. Development of single leg version of HAL for hemiplegia. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MI, USA, 2–6 September 2009; pp. 5038–5043. [Google Scholar]
- Raj, A.K.; Neuhaus, P.D.; Moucheboeuf, A.M.; Noorden, J.H.; Lecoutre, D.V. Mina: A sensorimotor robotic orthosis for mobility assistance. J. Robot. 2011, 2011, 284352. [Google Scholar] [CrossRef]
- Yeh, T.; Wu, M.; Lu, T.; Wu, F.; Huang, C. Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics 2010, 20, 686–697. [Google Scholar] [CrossRef]
- Ikehara, T.; Tanaka, E.; Nagamura, K.; Tamiya, T.; Ushida, T.; Hashimoto, K.; Kojima, S.; Ikejo, K.; Yuge, L. Development of closed-fitting-type walking assistance device for legs with self-contained control system. J. Robot. Mech. 2010, 22, 380–390. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Du, F.; Zhang, X. Design and control of a powered hip exoskeleton for walking assistance. Int. J. Adv. Robot. Syst. 2015, 12, 18. [Google Scholar] [CrossRef]
- Kong, K.; Jeon, D. Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans. Mech. 2006, 11, 428–432. [Google Scholar] [CrossRef]
- Hyon, S.; Morimoto, J.; Matsubara, T.; Noda, T.; Kawato, M. XoR: Hybrid drive exoskeleton robot that can balance. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 3975–3981. [Google Scholar]
- Nakamura, T.; Saito, K.; Wang, Z.; Kosuge, K. Realizing model-based wearable antigravity muscles support with dynamics terms. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2694–2699. [Google Scholar]
- Schiele, A. Ergonomics of exoskeletons: Subjective performance metrics. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 480–485. [Google Scholar]
- Cenciarini, M.; Dollar, A.M. Biomechanical considerations in the design of lower limb exoskeletons. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–6. [Google Scholar]
- Park, Y.; Chen, B.; Young, D.; Stirling, L.; Wood, R.J.; Goldfield, E.; Nagpal, R. Bio-inspired active soft orthotic device for ankle foot pathologies. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4488–4495. [Google Scholar]
- Park, Y.; Hen, B.C.; Perez-Arancibia, N.O.; Young, D.; Stirling, L.; Wood, R.J.; Goldfield, E.C.; Nagpal, R. Design and control of a bio-inspired soft wearable robotic device for ankle -foot rehabilitation. Bioinspir. Biomim. 2014, 9, 016007. [Google Scholar] [CrossRef] [PubMed]
- Asbeck, A.T.; Rossi, S.M.M.D.; Holt, K.G.; Walsh, C.J. A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 2015, 34, 744–762. [Google Scholar] [CrossRef]
- Asbeck, A.T.; Schmidt, K.; Galiana, I.; Wagner, D.; Walsh, C.J. Multi-joint soft exosuit for gait assistance. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 6197–6204. [Google Scholar]
- Ding, Y.; Galiana, I.; Asbeck, A.T.; Rossi, S.M.M.D.; Bae, J.; Santos, T.R.T.; Araujo, V.L.; Lee, S.; Holt, K.G.; Walsh, C. Biomechanical and Physiological Evaluation of Multi-joint Assistance with Soft Exosuits. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Iwamoto, N.; Hashimoto, K.; Yamamoto, M. Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Guo, S.; Hashimoto, K.; Xiong, X.; Yamamoto, M. Influence of a soft robotic suit on metabolic cost in long-distance level and inclined walking. Appl. Bionics Biomech. 2018, 2018, 9573951. [Google Scholar] [CrossRef]
- Majidi, C. Soft robotics: A perspective current trends and prospects for the future. Soft Robot. 2014, 1, 5–11. [Google Scholar] [CrossRef]
- Sekiya, N.; Nagasaki, H. Reproducibility of the walking patterns of normal young adults: Test-retest reliability of the walk ratio(step-length:step-rate). Gait Posture 1998, 7, 225–227. [Google Scholar] [CrossRef]
- Shimada, H.; Hirata, T.; Kimura, Y.; Naka, T.; Kikuchi, K.; Oda, K.; Ishii, K.; Ishiwata, K.; Suzuki, T. Effects of a robotic walking exercise on walking performance in community-dwelling elderly adults. Geriatr. Gerontol. Int. 2009, 9, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Kikuuwe, R.; Yasukouchi, S.; Fujimoto, H.; Yamamoto, M. Proxy-based sliding mode control: A safer extension of PID position control. IEEE Trans. Robot. 2010, 26, 670–683. [Google Scholar] [CrossRef]
- Holt, K.G.; Hamill, J.; Anders, R.O. Predicting the minimal energy costs of human walking. Med. Sci. Sport. Exerc. 1991, 23, 491–498. [Google Scholar] [CrossRef]
- Jin, S.; Guo, S.; Hashimoto, K.; Yamamoto, M. Influence of maximum assistive force of a soft wearable robotic suit on metabolic cost reduction. In Proceedings of the 8th IEEE International Conference on Cybernetics and Intelligent Systems and the 8th IEEE International Conference on Robotics, Automation and Mechatronics, Ningbo, China, 19–21 November 2017; pp. 146–150. [Google Scholar]
- Rota, V.; Perucca, L.; Simone, A.; Tesio, L. Walk ratio (step length/cadence) as a summary index of neuromotor control of gait: Application to multiple sclerosis. Int. J. Rehabil. Res. 2011, 34, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Suzuki, T.; Kimura, Y.; Hirata, T.; Sugiura, M.; Endo, Y.; Yasuhara, K.; Shimada, K.; Kikuchi, K.; Oda, K.; et al. Effects of an automated stride assistance system on walking parameters and muscular glucose metabolism in elderly adults. Br. J. Sport. Med. 2011, 42, 922–929. [Google Scholar] [CrossRef]
- Kerrigan, D.; Lee, L.; Collins, J. Reduced hip extension during walking: Healthy elderly and fallers versus young adults. Arch. Phys. Med. Rehabil. 2001, 82, 26–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristopoliski, F.; Barela, J.; Leite, N.; Fowler, N.; Rodacki, A. Stretching exercise program improves gait in the elderly. Gerontology 2009, 55, 614–620. [Google Scholar] [CrossRef]
- Kerrigan, D.; Xenopoulos-Oddsson, A.; Sullivan, M.; Lelas, J.; Riley, P. Effect of a hip flexor-stretching program on gait in the elderly. Arch. Phys. Med. Rehabil. 2003, 84, 1–6. [Google Scholar] [CrossRef]
- Watt, J.; Jackson, K.; Franz, J.; Dicharry, J.; Evans, J.; Kerrigan, D. Effect of a supervised hip flexor stretching program on gait in frail elderly patients. PM&R 2011, 3, 330–335. [Google Scholar]
- Aboutorabi, A.; Arazpour, M.; Bahramizadeh, M.; Hutchins, S.; Fadayevatan, R. The effect of aging on gait parameters in able-bodied older subjects: A literature review. Aging Clin. Exp. Res. 2016, 28, 393–405. [Google Scholar] [CrossRef]
- Kisner, C.; Colby, L. Therapeutic Exercise: Foundations and Techniques, 6th ed.; F. A Davis Company: Philadelphia, PA, USA, 2012. [Google Scholar]
- Wert, D.; Brach, J.; Perera, S.; VanSwearingen, J. Gait biomechanics, spatial and temporal characteristics, and the energy cost of walking in older adults with impaired mobility. Phys. Ther. 2000, 90, 977–985. [Google Scholar] [CrossRef]
- Waters, R.; Barnes, G.; Husserl, T.; Silver, L.; Liss, R. Comparable energy expenditure after arthrodesis of the hip and ankle. J. Bone Jt. Surg. Am. Vol. 1988, 70, 1032–1037. [Google Scholar] [CrossRef]
- Donelan, J.; Kram, R. Mechanical and metabolic determinants of the preferred step width in human walking. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Gordon, K.E.; Ferris, D.P.; Kuo, A.D. Metabolic and mechanical energy costs of reducing vertical Center of Mass Movement During Gait. Arch. Phys. Med. Rehabil. 2009, 90, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.; Howard, K.; Kram, R. The metabolic and mechanical costs of step time asymmetry in walking. Proc. R. Soc. B Biol. Sci. 2013, 280, 1–7. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Xiong, X.; Zhao, D.; Jin, C.; Yamamoto, M. Long-Term Effects of a Soft Robotic Suit on Gait Characteristics in Healthy Elderly Persons. Appl. Sci. 2019, 9, 1957. https://doi.org/10.3390/app9091957
Jin S, Xiong X, Zhao D, Jin C, Yamamoto M. Long-Term Effects of a Soft Robotic Suit on Gait Characteristics in Healthy Elderly Persons. Applied Sciences. 2019; 9(9):1957. https://doi.org/10.3390/app9091957
Chicago/Turabian StyleJin, Shanhai, Xiaogang Xiong, Dejin Zhao, Changfu Jin, and Motoji Yamamoto. 2019. "Long-Term Effects of a Soft Robotic Suit on Gait Characteristics in Healthy Elderly Persons" Applied Sciences 9, no. 9: 1957. https://doi.org/10.3390/app9091957
APA StyleJin, S., Xiong, X., Zhao, D., Jin, C., & Yamamoto, M. (2019). Long-Term Effects of a Soft Robotic Suit on Gait Characteristics in Healthy Elderly Persons. Applied Sciences, 9(9), 1957. https://doi.org/10.3390/app9091957