Evaluation of Performance of Inexpensive Laser Based PM2.5 Sensor Monitors for Typical Indoor and Outdoor Hotspots of South Korea
<p>Layout of ESCORTAIR installed INNOSOPLE-1 PM sensor for measuring particulate matter (PM) concentrations.</p> "> Figure 2
<p>Change of the slope with 95% confidence interval obtained from the regression line of BAM (Beta ray attenuation monitor) on IRMs (Inexpensive real-time particulate matter monitors) or RGMs (research grade monitors) by the degree of relative humidity.</p> "> Figure 3
<p>Distribution of difference of outdoor measurements against the FEM; BAM for outdoors.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. PM2.5 Real-Time Monitors
2.2. Federal Equivalent Method
2.3. Flow Rate Inspection
2.4. Experimental Setting
2.4.1. Indoor Test
2.4.2. Outdoor Test
2.5. Statistical Analyses
3. Results
3.1. PM2.5 Concentration
3.2. Correlations among Devices and the Fem
3.3. Effects of Ambient Humidity for Outdoor Measurement
3.4. Correction Factor
3.5. Bias after Application of Correction Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orellano, P.; Quaranta, N.; Reynoso, J.; Balbi, B.; Vasquez, J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta analysis. PLoS ONE 2017, 12, e0174050. [Google Scholar] [CrossRef]
- Prieto Parra, L.; Yohannessen, K.; Brea, C.; Vidal, D.; Ubilla, C.A.; Ruiz Rudolph, P. Air pollution, PM2.5 composition, source factors, and respiratory symptoms in asthmatic and nonasthmatic children in Santiago, Chile. Environ. Int. 2017, 101, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Gillooly, S.E.; Zhou, Y.; Vallarino, J.; Chu, M.T.; Michanowicz, D.R.; Levy, J.I.; Adamkiewicz, G. Development of an in~home, real-time air pollutant sensor platform and implications for community use. Environ. Pollut. 2019, 244, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Genikomsakis, K.N.; Galatoulas, N.; Dallas, P.I.; Ibarra, L.M.C.; Margaritis, D.; Ioakimidis, C.S. Development and On Field Testing of Low Cost Portable System for Monitoring PM2.5 Concentrations. Sensors 2018, 18, 1033. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Zhang, H.; Zhou, H. Fine Particle Sensor Based on Multi Angle Light Scattering and Data Fusion. Sensors 2017, 17, 1033. [Google Scholar] [CrossRef] [PubMed]
- Aneja, V.P.; Pillai, P.R.; Isherwood, A.; Morgan, P.; Aneja, S.P. Particulate matter pollution in the coal producing regions of the Appalachian Mountains: Integrated ground based measurements and satellite analysis. J. Air Waste Manag. Assoc. 2017, 67, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Burkart, J.; Steiner, G.; Reischl, G.; Moshammer, H.; Neuberger, M.; Hitzenberger, R. Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions. J. Aerosol. Sci. 2010, 41, 953–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousan, S.; Koehler, K.; Hallett, L.; Peters, T.M. Evaluation of the Alphasense Optical Particle Counter (OPC N2) and the Grimm Portable Aerosol Spectrometer (PAS 1.108). Aerosol. Sci. Technol. 2016, 50, 1352–1365. [Google Scholar] [CrossRef]
- Dacunto, P.J.; Klepeis, N.E.; Cheng, K.C.; Acevedo Bolton, V.; Jiang, R.T.; Repace, J.L.; Ott, W.R.; Hildemann, L.M. Determining PM2.5 calibration curves for a low cost particle monitor: Common indoor residential aerosols. Environ. Sci. Process. Impacts 2015, 17, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
- Lanki, T.; Alm, S.; Ruuskanen, J.; Janssen, N.A.; Jantunen, M.; Pekkanen, J. Photometrically measured continuous personal PM(2.5) exposure: Levels and correlation to a gravimetric method. J. Expo. Anal. Environ. Epidemiol. 2002, 12, 172–178. [Google Scholar] [CrossRef] [PubMed]
- O’Shaughnessy, P.T.; Slagley, J.M. Photometer response determination based on aerosol physical characteristics. AIHA J. 2002, 63, 578–585. [Google Scholar] [CrossRef]
- Baron, P.A. Aerosol Photometers for Respirable Dust Measurements. In NIOSH Manual of Analytical Methods; 1998. Available online: https://www.cdc.gov/niosh/docs/2003–154/pdfs/chapter~g.pdf (accessed on 25 March 2019).
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Semple, S.; Ibrahim, A.E.; Apsley, A.; Steiner, M.; Turner, S. Using a new, low cost air quality sensor to quantify second hand smoke (SHS) levels in homes. TOB Control. 2015, 24, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Aurell, J.; Mitchell, W.; Tabor, D.; Gullett, B. A small, lightweight multipollutant sensor system for ground mobile and aerial emission sampling from open area sources. Atmos. Environ. 2017, 154, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Franken, R.; Maggos, T.; Stamatelopoulou, A.; Loh, M.; Kuijpers, E.; Bartzis, J.; Steinle, S.; Cherrie, J.W.; Pronk, A. Comparison of methods for converting Dylos particle number concentrations to PM2.5 mass concentrations. Indoor Air 2019, 29, 450–459. [Google Scholar] [CrossRef]
- Williams, R.; Vasu Kilaru, E.; Snyder, A.; Kaufman, T.; Dye, A.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; EPA/600/R-14/159 (NTIS PB2015-100610); U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- National Institute of Environmental Research (NIER). 2015 Annual Report of Intensive air Quality Monitoring Station, NIER GP2016–160; NIER: Incheon, Korea, 2016. [Google Scholar]
- Yu, G.; Park, S.; Ghim, Y.; Shin, H.; Lim, C.; Ban, S.; Yu, J.; Kang, H.; Seo, Y.; Kang, K.; et al. Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations. J. Korean Soc. Atmos. Environ. 2018, 34, 16–37. [Google Scholar] [CrossRef]
- Lee, S.; Yu, S.; Kim, S. Evaluation of Potential Average Daily Doses (ADDs) of PM2.5 for Homemakers Conducting Pan Frying Inside Ordinary Homes under Four Ventilation Conditions. Int J. Environ. Res. Public Health 2017, 14, 78. [Google Scholar] [CrossRef]
- Rosner, B. Hypothesis Testing, Fundamentals of Biostatistics; Duxbury: Parific Grove, CA, USA, 2000; Chapter 7. [Google Scholar]
- Kim, B.M.; Teffera, S.; Zeldin, M.D. Characterization of PM2.5 and PM10 in the South Coast Air Basin of southern California: Part 1 Spatial variations. J. Air Waste Manag. Assoc. 2000, 50, 2034–2044. [Google Scholar] [CrossRef]
- Kim, B.M.; Teffera, S.; Zeldin, M.D. Characterization of PM2.5 and PM10 in the South Coast Air Basin of southern California: Part. 2 Temporal variations. J. Air Waste Manag. Assoc. 2000, 50, 2045–2059. [Google Scholar] [CrossRef] [PubMed]
- Borgini, A.; Tittarelli, A.; Ricci, C.; Bertoldi, M.; De Saeger, E.; Crosignani, P. Personal exposure to PM2.5 among high school students in Milan and background measurements: The EuroLifeNet study. Atmos. Environ. 2011, 45, 4147–4151. [Google Scholar] [CrossRef]
- Jiang, R.T.; Acevedo Bolton, V.; Cheng, K.C.; Klepeis, N.E.; Ott, W.R.; Hildemann, L.M. Determination of response of real-time SidePak AM510 monitor to secondhand smoke, other common indoor aerosols, and outdoor aerosol. J. Environ. Monit. 2011, 13, 1695–1702. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Lagler, F.; Barbiere, M.; Gerboles, M. Evaluation of a portable nephelometer against the Tapered Element Oscillating Microbalance method for monitoring PM(2.5). J. Environ. Monit 2012, 14, 2145–2153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Calderon, L.; Patton, A.P.; Sorensen Allacci, M.; Senick, J.; Wener, R.; Andrews, C.J.; Mainelis, G. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building. J. Air Waste Manag. Assoc. 2016, 66, 1109–1120. [Google Scholar] [CrossRef]
- Ramachandran, G.; Adgate, J.L.; Hill, N.; Sexton, K.; Pratt, G.C.; Bock, D. Comparison of short term variations (15 min averages) in outdoor and indoor PM2.5 concentrations. J. Air Waste Manag. Assoc. 2000, 50, 1157–1166. [Google Scholar] [CrossRef]
- Wallace, L.A.; Wheeler, A.J.; Kearney, J.; Van Ryswyk, K.; You, H.; Kulka, R.H.; Rasmussen, P.E.; Brook, J.R.; Xu, X. Validation of continuous particle monitors for personal, indoor, and outdoor exposures. J. Expo. Sci Environ. Epidemiol. 2011, 21, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Chen, F.; Cai, Y.; Fan, S.; Cai, J.; Chen, R.; Kan, H.; Lu, Y.; Zhao, Z. Validation of a light scattering PM2.5 sensor monitor based on the long term gravimetric measurements in field tests. PLoS ONE 2017, 12, e0185700. [Google Scholar] [CrossRef]
- Peters, T.M.; Ott, D.; O’Shaughnessy, P.T. Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles. Ann. Occup. Hyg. 2006, 50, 843–850. [Google Scholar] [PubMed]
- Njalsson, T.; Novosselov, I. Design and Optimization of a Compact Low Cost Optical Particle Sizer. J. Aerosol. Sci. 2018, 119, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Northcross, A.L.; Edwards, R.J.; Johnson, M.A.; Wang, Z.M.; Zhu, K.; Allen, T.; Smith, K.R. A low cost particle counter as a realtime fine particle mass monitor. Environ. Sci. Process. Impacts 2013, 15, 433–439. [Google Scholar] [CrossRef]
- Kim, S.; Jung, A. Optimum cutoff value of urinary cotinine distinguishing South Korean adult smokers from nonsmokers using data from the KNHANES (2008–2010). Nicotine Tob Res. 2013, 15, 1608–1616. [Google Scholar] [CrossRef]
Device Classification a | Sensor Type b | Measurement Range | Sampling Pump Flow Rate | Precision c | Log Interval c | Unit Price ($) | Weight (g) | Wi-Fi | |
---|---|---|---|---|---|---|---|---|---|
GRIMM (EDM180) 1 (GRIMM Aerosol, Germany) S/N #: 11R15047 | FEM | OPC | 0~3000,000 particles/Liter | 1.2 L/min, | 97% over the whole measuring range | 5 s to 1 h | 19,000 | 20,000 | No |
BAM-1020 2. (MetOne, OR) S/N #: N11181 | FEM | Beta ray Attenuation | 0~1000 mg/m3 | 16.7 L/min | Exceeds US-EPA Class III PM2.5 FEM standards | 1 min to 1 h | 23,750 | 24,500 | No |
ESCORTAIR 3 (ESCORT, Seoul, South Korea) S/N #: 6a:c6:3a:c7:83:bf 6a:c6:3a:c7:88:b1 | IRM | OPC | 1000 µg/m3 | NA | ±10%@100~500 μg/m³ | 30 s | 300 | 400 | Yes |
PA 4 (PurpleAir, CA, USA) S/N #: A0:20:A6:A:AD:1B. A0:20:A6:B:83:32 | IRM | Photometer | 0~500 µg/m3 as effective range | NA | ±10%@100~500 μg/m³ | 80 s | 300 | 450 | Yes |
PDR-1500 5 (Thermo Scientific, MA, USA) S/N #: CM17422007, CM17422017 | RGM | Photometer | 0.001~400 mg/m3 | Adjustable 0 to 3.5 L/min | ±2% of reading or ±0.005 mg/m3 | 1 s to 1 h | 9000 | 1200 | No |
SIDEPAK 6 (TSI, MN, USA) S/N #: 11104037, 11008055 | RGM | Photometer | 0.001~100 mg/m3 | Adjustable 0 to 1.8 L/min | ±0.001 mg/m3 over 24 h as zero stability | 1 s to 60 s | 6000 | 460 | No |
Indoor—Pan-Frying (n = 50) | Indoor—SHS (n = 60) | Outdoor—Urban Traffic Hotspot (n = 240) | |
---|---|---|---|
GRIMM | 153.2 (46.2–409.7) | 23.5 (15.9–107.1) | NA |
BAM | NA | NA | 9.0 (4.0–22.0) |
ESCORTAIR | 86.8 (17.8–254.4) | 20.9 (17.4–156.6) | 13.7 (7.3–21.2) |
PA | 104.9 (43.9–228.2) | 31.2 (14.4–194.3) | 19.7 (9.3–35.8) |
PDR-1500 | 236.2 (49.3–648.7) | 28.4 (12.8–314.0) | 13.8 (6.8–34.8) |
SIDEPAK | 261.3 (71.5–800.0 | 50.0 (21.0–652.0) | 29.1 (15.6–59.9) |
Temp. (°C) | 21.7 (21.1–21.7) | 20.1 (19.7–20.5) | 30.7 (25.6–40.7) |
RH (%) | 37.0 (35.0–39.0) | 37.0 (35.0–38.0) | 56.4 (34.8–71.4) |
Indoor-Pan-Frying | Indoor-SHS | Outdoor Urban Traffic Hotspot | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FEM | E | PA | P | S | FEM | E | PA | P | S | FEM | E | PA | P | S | |
FEM | 1 | 1 | 1 | ||||||||||||
E | 0.97 | 1 | 0.92 | 1 | 0.85 | 1 | |||||||||
PA | 0.97 | 0.93 | 1 | 0.86 | 0.85 | 1 | 0.88 | 0.93 | 1 | ||||||
PDR | 0.98 | 0.95 | 0.99 | 1 | 0.96 | 0.93 | 0.94 | 1 | 0.84 | 0.93 | 0.99 | 1 | |||
S | 0.98 | 0.99 | 0.96 | 0.98 | 1 | 0.88 | 0.86 | 0.88 | 0.93 | 1 | 0.91 | 0.91 | 0.99 | 0.99 | 1 |
Indoor—Pan-Frying | Indoor—SHS | Outdoor—Urban Traffic Hotspot | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Single | Multivariate * | Single | Multivariate * | Single | Multivariate * | |||||||
β | R2 | β | R2 | β | R2 | β | R2 | β | R2 | β | R2 | |
ESCORTAIR | 1.11 | 0.98 | 1.10 | 0.98 | 1.00 | 0.92 | 0.97 | 0.92 | 1.15 | 0.70 | 1.14 | 0.81 |
PA | 1.92 | 0.94 | 1.90 | 0.94 | 0.87 | 0.89 | 0.81 | 0.90 | 0.70 | 0.83 | 0.71 | 0.87 |
PDR-1500 | 0.33 | 0.98 | 0.33 | 0.98 | 0.54 | 0.91 | 0.49 | 0.92 | 0.33 | 0.72 | 0.36 | 0.80 |
SIDEPAK 1 | 0.34 | 0.98 | 0.32 | 0.99 | 0.28 | 0.90 | 0.31 | 0.92 | 0.35 | 0.84 | 0.36 | 0.89 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Park, S.; Lee, J. Evaluation of Performance of Inexpensive Laser Based PM2.5 Sensor Monitors for Typical Indoor and Outdoor Hotspots of South Korea. Appl. Sci. 2019, 9, 1947. https://doi.org/10.3390/app9091947
Kim S, Park S, Lee J. Evaluation of Performance of Inexpensive Laser Based PM2.5 Sensor Monitors for Typical Indoor and Outdoor Hotspots of South Korea. Applied Sciences. 2019; 9(9):1947. https://doi.org/10.3390/app9091947
Chicago/Turabian StyleKim, Sungroul, Sujung Park, and Jeongeun Lee. 2019. "Evaluation of Performance of Inexpensive Laser Based PM2.5 Sensor Monitors for Typical Indoor and Outdoor Hotspots of South Korea" Applied Sciences 9, no. 9: 1947. https://doi.org/10.3390/app9091947
APA StyleKim, S., Park, S., & Lee, J. (2019). Evaluation of Performance of Inexpensive Laser Based PM2.5 Sensor Monitors for Typical Indoor and Outdoor Hotspots of South Korea. Applied Sciences, 9(9), 1947. https://doi.org/10.3390/app9091947