Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network
<p>Three-layer structure of wavelet packet decomposition based on frequency order.</p> "> Figure 2
<p>(<b>a</b>) Experimental test rig and (<b>b</b>) Demonstration of the healthy and rotor with three broken bars.</p> "> Figure 3
<p>Typical motor current signal for 35% full-load (<b>a</b>) healthy motor and (<b>b</b>) motor with one broken bar.</p> "> Figure 4
<p>Architecture of the proposed system.</p> "> Figure 5
<p>Wavelet packet signature analysis (WPSA)-based algorithm.</p> "> Figure 6
<p>WPSA-based algorithm.</p> "> Figure 7
<p>Schematic diagram of the multi-layer perceptron (MLP) network Classifier.</p> "> Figure 8
<p>Root-mean-square (RMS) of wavelet packet coefficients (WPC).</p> "> Figure 9
<p>Variation of average classification and mean squared error (MSE) with a number of features as inputs in High Load.</p> "> Figure 10
<p>Variation of average classification and MSE with a number of features as inputs in Medium Load.</p> "> Figure 11
<p>Variation of average classification and MSE with a number of features as inputs in Low Load.</p> "> Figure 12
<p>Variation of average classification and MSE with a number of features as inputs in no Load.</p> "> Figure 13
<p>The Error between Real Output and Desired for Testing Data Set in 80% of Full Load.</p> "> Figure 14
<p>The Error between Real Output and Desired for Testing Data Set in 50% of Full Load.</p> "> Figure 15
<p>The Error between Real Output and Desired for Testing Data Set in 35% of Full Load.</p> "> Figure 16
<p>The Error between Real Output and Desired for Testing Data Set in 10% of Full Load.</p> ">
Abstract
:1. Introduction
2. Broken Rotor Bar in IMs
2.1. Effect of Broken Rotor Bar Fault on Rotor Magneto-Motive Force
2.2. Effect of Broken Rotor Bar in Frequency Domain
3. The Construction of Wavelet Packet Signature Analysis
4. Proposed Fault Diagnosis Algorithm
5. Results and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mehrjou, M.R.; Mariun, N.; Marhaban, M.H.; Misron, N. Rotor fault condition monitoring techniques for squirrel-cage induction machine—A review. Mech. Syst. Signal Process. 2011, 25, 2827–2848. [Google Scholar] [CrossRef]
- Filippetti, F.; Franceschini, G.; Tassoni, C. Neural Networks Aided On-Line Diagnostics of Induction Motor Rotor Faults. IEEE Trans. Ind. Appl. 1995, 31, 892–899. [Google Scholar] [CrossRef]
- Seera, M.; Lim, C.P.; Nahavandi, S.; Loo, C.K. Condition Monitoring of Induction Motors: A Review and an Application of an Ensemble of Hybrid Intelligent Models. Expert Syst. Appl. 2014, 41, 4891–4903. [Google Scholar] [CrossRef]
- Aydin, I.; Karakose, M.; Akin, E. A New Method for Early Fault Detection and Diagnosis of Broken Rotor Bars. Energy Convers. Manag. 2011, 52, 1790–1799. [Google Scholar] [CrossRef]
- Ayhan, B.; Trussell, H.J.; Chow, M.Y.; Song, M.H. On the Use of a Lower Sampling Rate for Broken Rotor Bar Detection With DTFT and AR-Based Spectrum Methods. IEEE Trans. Ind. Electron. 2008, 55, 1421–1434. [Google Scholar] [CrossRef]
- Feng, Z.; Liang, M.; Chu, F. Recent Advances in time-frequency Analysis Methods for Machinery Fault Diagnosis: A Review with Application Examples. Mech. Syst. Signal Process. 2013, 38, 165–205. [Google Scholar] [CrossRef]
- Mehrjou, M.R.; Mariun, N.; Marhaban, M.H.; Misron, N. Evaluation of fourier and wavelet analysis for efficient recognition of broken rotor bar in squirrel-cage induction machine. In Proceedings of the IEEE International Conference on Power and Energy (PECon), Kuala Lumpur, Malaysia, 29 November 2010. [Google Scholar] [CrossRef]
- Shi, P.; Chen, Z.; Vagapov, Y.; Zouaoui, Z. A New Diagnosis of Broken Rotor Bar Fault Extent in Three phase Squirrel Cage Induction Motor. Mech. Syst. Signal Process. 2014, 42, 388–403. [Google Scholar] [CrossRef]
- Zhang, S.; Mathew, J.; Ma, L.; Sun, Y. Best Basis-based Intelligent Machine Fault Diagnosis. Mech. Syst. Signal Process. 2003, 19, 357–370. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J.; Lotfi-fard, S.; Pillay, P. Novel Indices for Broken Rotor Bars Fault Diagnosis in Induction Motors Using Wavelet Transform. Mech. Syst. Signal Process. 2012, 30, 131–145. [Google Scholar] [CrossRef]
- Mehrjou, M.R.; Mariun, N.; Karami, M.; Noor, S.B.M.; Zolfaghari, S.; Norhisam Misron, M.Z.A.A.; Radzi, M.A.M.; Marhaban, M.H. Wavelet-Based Analysis of MCSA for Fault Detection in Electrical Machine, Wavelet Transform and Some of Its Real-World Applications; Baleanu, D., Ed.; InTech: London, UK, 2015. [Google Scholar] [CrossRef]
- Jimenez, G.A.; Munoz, A.O.; Duarte-Mermoud, M.A. Fault detection in induction motors using Hilbert and Wavelet transforms. Electr. Eng. 2007, 89, 205–220. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, B.; Sadeghian, A. Current signature analysis of induction motor mechanical faults by wavelet packet decomposition. IEEE Trans. Ind. Electron. 2003, 50, 1217–1228. [Google Scholar] [CrossRef]
- Sadeghian, A.; Ye, Z.; Wu, B. Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks. IEEE Trans. Instrum. Meas. 2009, 58, 2253–2263. [Google Scholar] [CrossRef]
- Zarei, J.; Poshtan, J. Bearing fault detection using wavelet packet transform of induction motor stator current. Tribol. Int. 2007, 40, 763–769. [Google Scholar] [CrossRef]
- Rafiee, J.; Tse, P.W.; Harfi, A.; Sadeghi, M.H. A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system. Expert Syst. Appl. 2009, 36, 4862–4875. [Google Scholar] [CrossRef]
- Wang, C.; Gao, R.X.; Yan, R. Unified Time-Scale-Frequency Analysis for Machine Defect Signature Extraction: Theoretical Framework. Mech. Syst. Signal Process. 2009, 23, 226–235. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Wang, K. Fault Diagnosis and Prognosis Using Wavelet Packet Decomposition, Fourier Transform and Artificial Neural Network. J. Intell. Manuf. 2013, 24, 213–1227. [Google Scholar] [CrossRef]
- Asfani, D.A.; Muhammad, A.K.; Purnomo, M.H.; Hiyama, T. Temporary Short Circuit Detection in Induction Motor Winding Using Combination of Wavelet Transform and Neural Network. Expert Syst. Appl. 2012, 39, 5367–5375. [Google Scholar] [CrossRef]
- Rafiee, J.; Arvani, F.; Harifi, A.; Sadeghi, M.H. Intelligent condition monitoring of a gearbox using artificial neural network. Mech. Syst. Signal Process. 2007, 21, 1746–1754. [Google Scholar] [CrossRef]
- Abu-Rub, H.; Iqbal, A.; Moin Ahmed, S.; Guzinski, J.; Adamowicz, M.; Rahiminia, M. Rotor broken bar diagnostics in induction motor drive using Wavelet packet transform and ANFIS classification. In Proceedings of the IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 15–18 May 2011. [Google Scholar]
- Bin, G.F.; Gao, J.J.; Li, X.J.; Dhillon, B.S. Early Fault Diagnosis of Rotating Machinery based on Wavelet Packets-Empirical Mode Decomposition Feature Extraction and Neural network. Mech. Syst. Signal Process. 2012, 27, 696–711. [Google Scholar] [CrossRef]
- Yan, R.; Gao, X.; Chen, X. Wavelets for Fault Diagnosis of Rotary Machines: A Review with Applications. Signal Process. 2014, 96, 1–15. [Google Scholar] [CrossRef]
- Bethel, N. Motor Efficiency and Fault Zone Analysis; PdMA® Corporation: Tampa, FL, USA, 2013. [Google Scholar]
- Culbert, I.; Rhodes, W. Using Current Signature Analysis Technology to Reliably Detect Cage Winding Defects in Squirrel Cage Induction Motors. IEEE Trans. Ind. Appl. 2007, 43, 95–101. [Google Scholar] [CrossRef]
- Arabaci, H.; Bilgin, O. Efficiency Analysis of Submersible Induction Motor with Broken Rotor Bar. In Transactions on Engineering Technologies; Kim, H.K., Ao, S.-I., Amouzegar, M.A., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 27–40. [Google Scholar] [CrossRef]
- Bellini, A.; Filippetti, F.; Tassoni, C.; Capolino, G.A. Advances in Diagnostic Techniques for Induction Machines. IEEE Trans. Ind. Electron. 2008, 55, 4109–4126. [Google Scholar] [CrossRef]
- Ilonen, J.; Kamarainen, J.-K.; Lindh, T.; Ahola, J.; Kalviainen, H.; Partanen, J. Diagnosis Tool for Motor Condition Monitoring. IEEE Trans. Ind. Appl. 2005, 41, 963–971. [Google Scholar] [CrossRef]
- Fiser, R.; Ferkolj, S. Application of a finite element method to predict damaged induction motor performance. IEEE Trans. Magn. 2001, 37, 3635–3639. [Google Scholar] [CrossRef]
- Kliman, G.B.; Koegl, R.A.; Stein, J.; Endicott, R.D.; Madden, M.W. Noninvasive Detection of Broken Rotor Bars in Operating Induction Motors. IEEE Trans. Energy Convers. 1988, 3, 873–879. [Google Scholar] [CrossRef]
- Finley, W.R.; Hodowanec, M.M.; Holter, W.G. An Analytical Approach to Solving Motor Vibration Problems. IEEE Trans. Ind. Appl. 2000, 36, 1467–1480. [Google Scholar] [CrossRef]
- Bonnett, A.H.; Soukup, G.C. Rotor Failures in Squirrel Cage Induction Motors. IEEE Trans. Ind. Appl. 1986, 22, 1165–1173. [Google Scholar] [CrossRef]
- Bangura, J.F.; Demerdash, N.A. Diagnosis and Characterization of Effects of Broken Bars and Connectors in Squirrel-Cage Induction Motors by a Time-Stepping Coupled Finite Element-State Space Modeling Approach. IEEE Trans. Energy Convers. 1999, 14, 1167–1176. [Google Scholar] [CrossRef]
- Hargis, C.; Gaydon, B.; Kamash, K. The detection of rotor defects in induction motors. In Proceedings of the IEE International Conference Electrical Machines, Design and Application, London, UK, 13–15 July 1982. [Google Scholar]
- Ghorbanian, V.; Faiz, J. A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes. Mech. Syst. Signal Process. 2015, 54–55, 427–456. [Google Scholar] [CrossRef]
- Mallat, S.G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Rafiee, J.; Tse, P.W. Use of Autocorrelation of Wavelet Coefficients for Fault Diagnosis. Mech. Syst. Signal Process. 2009, 23, 1554–1572. [Google Scholar] [CrossRef]
- Hamid, E.Y.; Kawasaki, Z. Wavelet-Based Data Compression of Power System Disturbances Using the Minimum Description Length Criterion. IEEE Trans. Power Deliv. 2002, 17, 460–466. [Google Scholar] [CrossRef]
- Khan, M.A.S.K.; Radwan, T.S.; Rahman, M.A. Real-Time Implementation of Wavelet Packet Transform-Based Diagnosis and Protection of Three-Phase Induction Motors. IEEE Trans. Energy Conver. 2007, 22, 647–655. [Google Scholar] [CrossRef]
- Jiao, X.; Ding, K.; He, G. An Algorithm for Improving the Coefficient Accuracy of Wavelet Packet Analysis. Measurement 2014, 47, 207–220. [Google Scholar] [CrossRef]
- Coifman, R.R.; Wickerhauser, M.V. Entropy Based Algorithms for Best Basis Selection. IEEE Trans. Inf. Theory 1992, 32, 712–718. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Burrus, C.S.; Gopinath, R.A.; Guo, H. Introduction to Wavelets and Wavelets Transforms: A Primer; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Nikolaou, N.G.; Antoniadis, I.A. Rolling Element Bearing Fault Diagnosis Using Wavelet Packets. NDT E Int. 2002, 35, 197–205. [Google Scholar] [CrossRef]
Ref. | Fault | Signal Processing | Feature Index | Mother Wavelet | Artificial Intelligent | Disadvantages |
---|---|---|---|---|---|---|
[14] | BRB | WPD | Feature coefficient | Coif 4 | Artificial neural network | Only one feature is extracted & Disordering of sub-band frequency |
[21] | BRB | WPD | Statistical feature of wavelet packet 1-d | Haar | Adaptive neuro-fuzzy inference system | Only one mother wavelet is studied & Lack of BRB fault severity detection |
[22] | Rotor | WPD, Empirical Mode Decomposition | Energy moment of IMFs | Db 5 | Multi-layer feed-forward neural network | Only one mother wavelet is studied & Only one feature is extracted |
Load | Speed | Torque | Slip | (Depth, Node) | Frequency Sub-Band | ||
---|---|---|---|---|---|---|---|
High | 958 | 5.7 | 50.01 | 0.042 | 45.811 | (6,3) | [31.25–46.88] |
Medium | 976 | 3.96 | 49.98 | 0.024 | 47.584 | (7,5) | [46.88–54.69] |
Low | 991 | 1.53 | 49.98 | 0.009 | 49.080 | (8,10) | [46.88–50.78] |
No | 998 | 0.01 | 49.8 | 0.002 | 49.6008 | (9,21) | [48.83–50.78] |
Features | Healthy | 1BRB | 2BRB | 3BRB | |
---|---|---|---|---|---|
High Load (6,3) | RMS | 4.5596 | 4.7330 | 4.8220 | 4.8274 |
RSSQ | 49.108 | 50.976 | 51.934 | 51.992 | |
Kurtosis | 5.0818 | 5.0121 | 4.9798 | 4.8902 | |
Skewness | 0.3147 | 0.3075 | 0.3088 | 0.2854 | |
Mean | 0.0277 | 0.0265 | 0.0276 | 0.0255 | |
PtoP | 26.793 | 27.725 | 28.173 | 28.113 | |
P to RMS | 2.9738 | 2.9614 | 2.9544 | 2.9413 | |
Log Detect | 1.5660 | 1.6154 | 1.7383 | 1.7862 | |
PAPR | 8.8445 | 8.7707 | 8.7290 | 8.6514 | |
Shape Factor | 174.39 | 185.67 | 176.91 | 191.22 | |
Impulse Factor | 519.44 | 549.84 | 522.76 | 562.39 | |
Energy | 2413.8 | 2599.3 | 2697.4 | 2703.7 | |
StD | 4.5793 | 4.7535 | 4.8428 | 4.8482 | |
6th-Moment | 309,542 | 376,865 | 416,589 | 409,496 | |
The bold numbers mean: the valus of a feature follow an incresing or decreasing trend regarding the fault severity. |
Features | Healthy | 1BRB | 2BRB | 3BRB | |
---|---|---|---|---|---|
Medium Load (7,5) | RMS | 13.049 | 13.386 | 13.647 | 14.064 |
RSSQ | 131.14 | 134.52 | 137.13 | 141.34 | |
Kurtosis | 2.4943 | 2.4792 | 2.4466 | 2.5265 | |
Skewness | 0.0650 | 0.0398 | 0.0218 | 0.1119 | |
Mean | 0.1199 | 0.1154 | 0.1080 | 0.1445 | |
PtoP | 54.545 | 56.185 | 57.470 | 58.061 | |
P to RMS | 2.2327 | 2.2165 | 2.1998 | 2.2450 | |
Log Detect | 6.4912 | 6.6992 | 7.1041 | 6.7506 | |
PAPR | 4.9851 | 4.8775 | 4.8401 | 5.0403 | |
Shape Factor | 109.78 | 119.47 | 127.91 | 97.700 | |
Impulse Factor | 245.04 | 264.03 | 281.06 | 219.36 | |
Energy | 17,241 | 18,099 | 18,807 | 19,979 | |
StD | 13.114 | 13.452 | 13.713 | 14.134 | |
6th-Moment | 3.93 × 108 | 4.38 × 108 | 4.84 × 108 | 6.05 × 108 | |
The bold numbers mean: the valus of a feature follow an incresing or decreasing trend regarding the fault severity. |
Features | Healthy | 1BRB | 2BRB | 3BRB | |
---|---|---|---|---|---|
Low Load (8,10) | RMS | 15.61 | 15.99 | 16.158 | 16.226 |
RSSQ | 151.38 | 155.05 | 156.66 | 157.32 | |
Kurtosis | 2.778 | 2.837 | 2.712 | 2.885 | |
Skewness | −0.0462 | −0.0316 | 0.0364 | −0.0495 | |
Mean | 0.4242 | 0.4635 | 0.4843 | 0.4565 | |
PtoP | 76.782 | 77.907 | 74.351 | 79.597 | |
P to RMS | 2.5607 | 2.5570 | 2.4571 | 2.5794 | |
Log Detect | 8.3186 | 8.4276 | 8.4875 | 8.3089 | |
PAPR | 5.5706 | 5.6598 | 6.0381 | 5.4074 | |
Shape Factor | 37.076 | 34.528 | 33.375 | 35.564 | |
Impulse Factor | 95.543 | 88.380 | 82.011 | 91.802 | |
Energy | 23015 | 24055 | 24546 | 24753 | |
StD | 15.691 | 16.071 | 16.238 | 16.307 | |
6th-Moment | 1.76 × 108 | 1.98 × 108 | 1.83 × 108 | 2.23 × 108 | |
The bold numbers mean: the valus of a feature follow an incresing or decreasing trend regarding the fault severity. |
Features | Healthy | 1BRB | 2BRB | 3BRB | |
---|---|---|---|---|---|
No Load (9,21) | RMS | 20.571 | 21.243 | 21.326 | 21.686 |
RSSQ | 195.16 | 201.53 | 202.31 | 205.73 | |
Kurtosis | 3.3268 | 3.2732 | 3.1821 | 3.0076 | |
Skewness | −0.0579 | −0.0624 | −0.0654 | −0.0694 | |
Mean | −0.8348 | −0.8774 | −0.7704 | −1.0566 | |
PtoP | 111.70 | 114.22 | 112.69 | 112.25 | |
P to RMS | 2.8716 | 2.8379 | 2.7286 | 2.6786 | |
Log Detect | 10.060 | 10.593 | 10.400 | 11.484 | |
PAPR | 8.2465 | 8.0539 | 7.3546 | 7.1889 | |
Shape Factor | −24.910 | −24.852 | −29.177 | −20.766 | |
Impulse Factor | −71.518 | −70.555 | −80.108 | −55.783 | |
Energy | 38129 | 40617 | 40938 | 42330 | |
StD | 20.669 | 21.343 | 21.430 | 21.781 | |
6th-Moment | 1.28 × 109 | 1.47 × 109 | 1.39 × 109 | 1.4 × 109 | |
The bold numbers mean: the valus of a feature follow an incresing or decreasing trend regarding the fault severity. |
Testing on CV Data | ||||
---|---|---|---|---|
Performance Measure | High Load | Medium Load | Low Load | No Load |
cp.ErrorRate | 0.01667 | 0.01666 | 0 | 0.0333 |
cp.CorrectRate | 0.98333 | 0.98333 | 1 | 0.9667 |
mean_ErrorRate | 0.01604 | 0.01626 | 0 | 0.0338 |
mean_CorrectRate | 0.9839 | 0.98373 | 1 | 0.9661 |
Standard deviation | 0.00049 | 0.00050 | 0 | 0.0005 |
No. of features | 5 | 9 | 5 | 7 |
Testing on Test Data | ||||
---|---|---|---|---|
Performance Measure | High Load | Medium Load | Low Load | No Load |
Averaged MSE | 0.0055 | 0.003 | 0.0032 | 0.0046 |
RMSE(Min. observed) | 0.0698 | 0.05 | 0.039 | 0.0654 |
MSE(Min. observed) | 0.0048 | 0.0025 | 0.0015 | 0.0042 |
Classification accuracy | 98.80% | 98.80% | 98.80% | 98.80% |
Load/FL | Fault Severity | Desired Output | Actual Output | ||||||
---|---|---|---|---|---|---|---|---|---|
10% | HRB | 0.1 | 0.1 | 0.1 | 0.9 | 0.092 | 0.116 | 0.102 | 0.904 |
1BRB | 0.1 | 0.1 | 0.9 | 0.1 | 0.092 | 0.136 | 0.893 | 0.073 | |
2BRB | 0.1 | 0.9 | 0.1 | 0.1 | 0.139 | 0.892 | 0.064 | 0.117 | |
3BRB | 0.9 | 0.1 | 0.1 | 0.1 | 0.882 | 0.126 | 0.103 | 0.096 | |
30% | HRB | 0.1 | 0.1 | 0.1 | 0.9 | 0.1 | 0.145 | 0.068 | 0.897 |
1BRB | 0.1 | 0.1 | 0.9 | 0.1 | 0.096 | 0.142 | 0.858 | 0.106 | |
2BRB | 0.1 | 0.9 | 0.1 | 0.1 | 0.092 | 0.912 | 0.088 | 0.103 | |
3BRB | 0.9 | 0.1 | 0.1 | 0.1 | 0.888 | 0.101 | 0.103 | 0.103 | |
50% | HRB | 0.1 | 0.1 | 0.1 | 0.9 | 0.151 | 0.062 | 0.111 | 0.889 |
1BRB | 0.1 | 0.1 | 0.9 | 0.1 | 0.092 | 0.156 | 0.837 | 0.126 | |
2BRB | 0.1 | 0.9 | 0.1 | 0.1 | 0.069 | 0.86 | 0.156 | 0.107 | |
3BRB | 0.9 | 0.1 | 0.1 | 0.1 | 0.901 | 0.111 | 0.112 | 0.077 | |
80% | HRB | 0.1 | 0.1 | 0.1 | 0.9 | 0.086 | 0.109 | 0.121 | 0.891 |
1BRB | 0.1 | 0.1 | 0.9 | 0.1 | 0.102 | 0.094 | 0.903 | 0.108 | |
2BRB | 0.1 | 0.9 | 0.1 | 0.1 | 0.093 | 0.924 | 0.061 | 0.12 | |
3BRB | 0.9 | 0.1 | 0.1 | 0.1 | 0.875 | 0.09 | 0.129 | 0.109 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolfaghari, S.; Noor, S.B.M.; Rezazadeh Mehrjou, M.; Marhaban, M.H.; Mariun, N. Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network. Appl. Sci. 2018, 8, 25. https://doi.org/10.3390/app8010025
Zolfaghari S, Noor SBM, Rezazadeh Mehrjou M, Marhaban MH, Mariun N. Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network. Applied Sciences. 2018; 8(1):25. https://doi.org/10.3390/app8010025
Chicago/Turabian StyleZolfaghari, Sahar, Samsul Bahari Mohd Noor, Mohammad Rezazadeh Mehrjou, Mohammad Hamiruce Marhaban, and Norman Mariun. 2018. "Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network" Applied Sciences 8, no. 1: 25. https://doi.org/10.3390/app8010025
APA StyleZolfaghari, S., Noor, S. B. M., Rezazadeh Mehrjou, M., Marhaban, M. H., & Mariun, N. (2018). Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network. Applied Sciences, 8(1), 25. https://doi.org/10.3390/app8010025