Pore Characteristics and Their Effects on the Material Properties of Foamed Concrete Evaluated Using Micro-CT Images and Numerical Approaches
<p>Foamed concrete specimens with different densities.</p> "> Figure 2
<p>SEM images of the foamed concrete specimens with different densities.</p> "> Figure 3
<p>SEM images of LithoPore<sup>®</sup>100 (density = 100 kg/m<math display="inline"> <semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics> </math>) and LithoPore<sup>®</sup>450 specimens (density = 450 kg/m<math display="inline"> <semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics> </math>) at 5000× magnification.</p> "> Figure 4
<p>Creation of a 3D binary model using micro-CT images (note: in the binary image, the white represents solid, and the black represents pore).</p> "> Figure 5
<p>Classification of pores by means of watershed transformation (note: in the right figure, each color denotes a distinct pore).</p> "> Figure 6
<p>Examples of the probability functions for the foamed specimen: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>, (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> (note: the white regions are pores (<span class="html-italic">p</span>), and the gray regions represent solids; lines are shown as <math display="inline"> <semantics> <msub> <mi>r</mi> <mi>i</mi> </msub> </semantics> </math> with arbitrary lengths and directions).</p> "> Figure 7
<p>Example of the evaluation of the local porosity distribution (note: in this image, the white represents a pore region, and the local porosity has a value between zero and one).</p> "> Figure 8
<p>Hot Disk sensor and its operation process for evaluating thermal properties.</p> "> Figure 9
<p>3D micro-CT images of foamed concrete specimens with different densities: (<b>a</b>) LithoPore<sup>®</sup>100, (<b>b</b>) LithoPore<sup>®</sup>200, (<b>c</b>) LithoPore<sup>®</sup>450, (<b>d</b>) LithoPore<sup>®</sup>600 (note: in each binarized image, the white region represents solid).</p> "> Figure 10
<p>Probability functions for the pore sizes of the foamed specimens: (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> of LithoPore<sup>®</sup>100, (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> of LithoPore<sup>®</sup>100, (<b>c</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> of LithoPore<sup>®</sup>200, (<b>d</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> of LithoPore<sup>®</sup>200, (<b>e</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> of LithoPore<sup>®</sup>450, (<b>f</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> of LithoPore<sup>®</sup>450, (<b>g</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> of LithoPore<sup>®</sup>600, (<b>h</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> of LithoPore<sup>®</sup>600 (note: in each function, <span class="html-italic">r</span> is the distance between two points, and <span class="html-italic">D</span> is the length of the specimen).</p> "> Figure 11
<p>Pore size distribution of the foamed specimens: (<b>a</b>) LithoPore<sup>®</sup>100, (<b>b</b>) LithoPore<sup>®</sup>200, (<b>c</b>) LithoPore<sup>®</sup>450, (<b>d</b>) LithoPore<sup>®</sup>600.</p> "> Figure 12
<p>Comparison of the shape factors for the foamed specimens.</p> "> Figure 13
<p>Selected volume element (SVE) of the specimen for numerical analysis: (<b>a</b>) LithoPore<sup>®</sup>100, (<b>b</b>) LithoPore<sup>®</sup>200, (<b>c</b>) LithoPore<sup>®</sup>450, (<b>d</b>) LithoPore<sup>®</sup>600 (note: transparent meshes of each figure are the specimens in <a href="#applsci-07-00550-f009" class="html-fig">Figure 9</a>).</p> "> Figure 14
<p>Temperature isosurfaces of the foamed specimens: (<b>a</b>) LithoPore<sup>®</sup>100, (<b>b</b>) LithoPore<sup>®</sup>200, (<b>c</b>) LithoPore<sup>®</sup>450, (<b>d</b>) LithoPore<sup>®</sup>600 (note: in each figure, the left figure is in the <span class="html-italic">x</span> direction heat flow, and the middle and right figures are in the <span class="html-italic">y</span> and <span class="html-italic">z</span> directions, respectively).</p> "> Figure 14 Cont.
<p>Temperature isosurfaces of the foamed specimens: (<b>a</b>) LithoPore<sup>®</sup>100, (<b>b</b>) LithoPore<sup>®</sup>200, (<b>c</b>) LithoPore<sup>®</sup>450, (<b>d</b>) LithoPore<sup>®</sup>600 (note: in each figure, the left figure is in the <span class="html-italic">x</span> direction heat flow, and the middle and right figures are in the <span class="html-italic">y</span> and <span class="html-italic">z</span> directions, respectively).</p> "> Figure 15
<p>Comparison of the thermal conductivity values of the specimens in the <span class="html-italic">x</span>, <span class="html-italic">y</span> and <span class="html-italic">z</span> directions.</p> "> Figure 16
<p>Comparison of the mechanical properties of the specimens in the <span class="html-italic">x</span>, <span class="html-italic">y</span> and <span class="html-italic">z</span> directions: (<b>a</b>) directional modulus, (<b>b</b>) strength.</p> "> Figure 17
<p>Stress contour of the specimens: (<b>a</b>) LithoPore<sup>®</sup>100, (<b>b</b>) LithoPore<sup>®</sup>600 (note: the upper figures are von-Mises stress contour, and the lower figures show the elements on the yield strength, which are mapped on to the the transparent meshes; in each figure, the left is the case of loading in the <span class="html-italic">x</span> direction, the middle and right figures show loading in the <span class="html-italic">y</span> and <span class="html-italic">z</span> directions, respectively).</p> "> Figure 17 Cont.
<p>Stress contour of the specimens: (<b>a</b>) LithoPore<sup>®</sup>100, (<b>b</b>) LithoPore<sup>®</sup>600 (note: the upper figures are von-Mises stress contour, and the lower figures show the elements on the yield strength, which are mapped on to the the transparent meshes; in each figure, the left is the case of loading in the <span class="html-italic">x</span> direction, the middle and right figures show loading in the <span class="html-italic">y</span> and <span class="html-italic">z</span> directions, respectively).</p> "> Figure 18
<p>Solid density contour (left) and high dense region of solids (right): (<b>a</b>) LithoPore<sup>®</sup>100, (<b>b</b>) LithoPore<sup>®</sup>600 (note: in the right figures, the regions with over a 0.9 volume ratio are only mapped on to the meshes to emphasize highly dense regions).</p> ">
Abstract
:1. Introduction
2. Preparation of Foamed Concrete Specimens
3. Micro-CT Image and Characterization of the Pore Structure
3.1. SEM and Micro-CT Imaging Method
3.2. Probabilistic and Quantitative Characterization Methods
3.2.1. Low-Order Probability Functions
3.2.2. Local Volume Ratio and Shape Factor
4. Properties Evaluation Using Experiments and Numerical Methods
4.1. Experiments for the Evaluation of Material Properties
4.2. Numerical Simulation for Thermal and Mechanical Analysis
5. Results and Discussion
5.1. Micro-CT Image and Characteristics of the Pore Structure
5.2. Material Properties of the Foamed Specimens
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nambiar, E.K.; Ramamurthy, K. Air–void characterisation of foam concret. Cem. Concr. Res. 2007, 37, 221–230. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Nambiar, E.K.; Ranjani, G. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, T.; Wen, Z. Proportioning and characterization of portland cement-based ultra-lightweight foam concretes. Constr. Build. Mater. 2015, 79, 390–396. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 2014, 51, 151–162. [Google Scholar] [CrossRef]
- Eleftheriadis, S.; Mumovic, D.; Greening, P. Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renew. Sustain. Energy Rev. 2017, 67, 811–825. [Google Scholar] [CrossRef]
- Amran, Y.H.; Farzadnia, N.; Ali, A.A. Properties and applications of foamed concrete; a review. Constr. Build. Mater. 2015, 101, 990–1005. [Google Scholar] [CrossRef]
- Jaing, J.; Lu, Z.; Niu, Y.; Li, J.; Zhang, Y. Study on the preparation and properties of high-porosity foamed concretes based on ordinary portland cement. Mater. Des. 2016, 92, 949–959. [Google Scholar] [CrossRef]
- Yang, K.-H.; Lo, C.-W.; Huang, J.-S. Production and properties of foamed reservoir sludge inorganic polymers. Constr. Build. Mater. 2014, 50, 421–431. [Google Scholar] [CrossRef]
- Dorey, R.; Yeomans, J.; Smith, P. Effect of pore clustering on the mechanical properties of ceramics. J. Eur. Ceram. Soc. 2002, 22, 403–409. [Google Scholar] [CrossRef]
- Gallucci, E.; Scrivener, K.; Groso, A.; Stampanoni, M.; Margaritondo, G. 3D experimental investigation of the microstructure of cement pastes using synchrotron X-ray microtomography. Cem. Concr. Res. 2007, 37, 360–368. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Han, T.-S.; Yun, T.S.; Yeom, K.S. Evaluation of the anisotropy of the void distribution and the stiffness of lightweight aggregates using CT imaging. Constr. Build. Mater. 2013, 48, 998–1008. [Google Scholar] [CrossRef]
- Kearsley, E.P.; Wainwright, P.J. The effect of porosity on the strength of foamed concrete. Cem. Concr. Res. 2002, 32, 233–239. [Google Scholar] [CrossRef]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. On entrained pore size distribution of foamed concrete. Constr. Build. Mater. 2015, 75, 227–233. [Google Scholar] [CrossRef]
- Wei, S.; Yuqiang, C.; Yunsheng, Z.; Jones, M.R. Characterization and simulation of microstructure and thermal properties of foamed concrete. Constr. Build. Mater. 2013, 47, 1278–1291. [Google Scholar] [CrossRef]
- Wei, S.; Yunsheng, Z.; Jones, M.R. Three-dimensional numerical modeling and simulation of the thermal properties of foamed concrete. Constr. Build. Mater. 2014, 50, 421–431. [Google Scholar]
- Narayanan, N.; Ramamurthy, K. Structure and properties of aerated concrete: A review. Cem. Concr. Compos. 2000, 22, 321–329. [Google Scholar] [CrossRef]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. On void structure and strength of foamed concrete made without/with additives. Constr. Build. Mater. 2015, 85, 157–164. [Google Scholar] [CrossRef]
- Patterson, B.M.; Escobedo-Diaz, J.P.; Dennis-Koller, D.; Cerreta, E. Dimensional quantification of embedded voids or objects in three dimensions using X-ray tomograph. Microsc. Microanal. 2012, 18, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Natesayer, K.; Chan, C.; Sinha-Ray, S.; Song, D.; Lin, C.L.; Miller, J.D.; Garboczi, E.J.; Foster, A.M. X-ray CT imaging and finite element computations of the elastic properties of a rigid organic foam compared to experimental measurements: Insights into foam variability. J. Mater. Sci. 2015, 50, 4012–4024. [Google Scholar] [CrossRef]
- Torquato, S. Random Heterogeneous Materials; Springer: New York, NY, USA, 2002; pp. 327–335. [Google Scholar]
- Tewari, A.; Gokhale, A.M.; Spowart, J.E.; Miracle, D.B. Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions. Acta Mater. 2004, 52, 307–319. [Google Scholar] [CrossRef]
- Gokhale, A.; Tewari, A.; Garmestani, H. Constraints on microstructural two-point correlation functions. Scr. Mater. 2005, 53, 989–993. [Google Scholar] [CrossRef]
- Lu, B.; Torquato, S. Lineal-path function for random heterogeneous materials. Phys. Rev. A 1992, 45, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-Y.; Han, T.-S. Reconstruction of random two-phase polycrystalline solids using low-order probability functions and evaluation of mechanical behavior. Comput. Mater. Sci. 2010, 49, 705–719. [Google Scholar] [CrossRef]
- Ke, Y.; Beaucour, A.L.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 2821–2828. [Google Scholar] [CrossRef]
- Neithalath, N.; Sumanassoriya, M.S.; Deo, O. Characterizing pore volume, size, and connectivity in pervious concretes for permeability prediction. Mater. Charact. 2010, 61, 802–813. [Google Scholar] [CrossRef]
- Plastics–Determination of Thermal Conductivity and Thermal Diffusivity–Part 2: Transient Plane Heat Source (Hot Disk) Method; ISO 22007-2:2015, DIN EN 1990; International Organization for Standardization: Geneva, Switzerland, 2015.
- Luca, S. Preparing Foamed Concrete for Wall Backfillings, Comprises Forming Cement Paste Comprising Cement, Water and Network Agent by Mixing of the Components in Planet Mixer, Forming a Foam by Foam Generator, and Mixing the Paste and the Foam. DE Patent App. DE201-010-062-762, 14 June 2012. [Google Scholar]
- Boone, M.; Witte, Y.D.; Dierick, M.; Bulcke, J.V.; Vlassenbroeck, J.; Hoorebeke, V. Practical use of the modified bronnikov algorithm in micro-CT. Nucl. Instrum. Methods Phys. Res. Sect. B 2009, 267, 1182–1186. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, X.; Petriu, E.M. Watershed segmentation for binary images with different distance transforms. In Proceedings of the 3rd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications, Ottawa, ON, Canada, 2–3 October 2004; Volume 2–3, pp. 111–116. [Google Scholar]
- Videla, A.; Lin, C.-L.; Miller, J.D. Watershed functions applied to a 3D image segmentation problem for the analysis of packed particle beds. Part. Part. Syst. Char. 2006, 23, 237–245. [Google Scholar] [CrossRef]
- Babcsan, N.; Beke, S.; Szamel, G.; Borzsonyu, T.; Szabo, B.; Mokso, R.; Kadar, C.; Kiss, J.B. Characterizsation of ALUHAB aluminium foams with micro-CT. Procedia Mater. Sci. 2014, 4, 69–74. [Google Scholar] [CrossRef]
- Cui, F.; Wang, X. L.; Peng, S.; Vogel, C. A Parallel Algorithm for Quasi Euclidean Distance Transform. J. Image Gr. 2004, 6, 1–6. [Google Scholar]
- MATLAB Version 7.10; The MathWorks Inc.: Natick, MA, USA, 2015.
- Chung, S.-Y.; Han, T.-S.; Kim, S.-Y.; Lee, T.-H. Investigation of the permeability of porous concrete reconstructed using probabilistic description methods. Constr. Build. Mater. 2014, 66, 760–770. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Abd Elrahman, M.; Stephan, D.; Kamm, P.H. Investigation of characteristics and responses of insulating cement paste specimens with Aer solids using X-ray micro-computed tomography. Constr. Build. Mater. 2016, 118, 204–215. [Google Scholar] [CrossRef]
- Vecchio, I.; Schladitz, K.; Godehardt, M. Geometrical Characterization of Particles in 3D with an Application to Technical Cleanliness; Fraunhofer-Institut fur Techno- und Wirtschaftsmathematik: Kaiserslautern, Germany, 2011; pp. 1–33. [Google Scholar]
- ABAQUS Version 6.13; Dassault Systemes: Pawtucket, RI, USA, 2013.
- Chung, S.-Y.; Stephan, D.; Abd Elrahman, M.; Han, T.-S. Effects of anisotropic voids on thermal properties of insulating media investigated using 3D printed samples. Constr. Build. Mater. 2016, 111, 529–542. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley and Sons: New York, NY, USA, 2006; pp. 127–139. [Google Scholar]
- Kmiecik, P.; Kaminski, M. Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration. Arch. Civ. Mech. Eng. 2011, 11, 623–636. [Google Scholar] [CrossRef]
- Jones, M.R. Foamed concrete for structural use. In Proceeding of One Day Seminar on Foamed Concrete: Properties, Applications and Latest Technological Developments; Loughborough University: Reading, UK, 2001; pp. 24–33. [Google Scholar]
- Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 2016, 112, 716–724. [Google Scholar] [CrossRef]
- Jankowiak, T.; Lodygowski, T. Identification of parameters of concrete damage plasticity constitutive model. Found. Civ. Environ. Eng. 2008, 6, 53–69. [Google Scholar]
Specimen | LithoPore®100 | LithoPore®200 | LithoPore®450 | LithoPore®600 |
---|---|---|---|---|
Target (dry) density (kg/m) | 100 | 200 | 450 | 600 |
Wet density (kg/m) | 150–158 | 305–315 | 530–545 | 710–760 |
Cement content (kg/m) | 61 | 170 | 215 | 285 |
Water (kg/m) | 28 | 77 | 125 | 225 |
Foam content (kg/m) | 67.2 | 64.3 | 59.2 | 52.0 |
Filler (fly ash and calcium carbonate) (kg/m) | - | - | 95 | 215 |
Network former LithoFoam® (kg/m) | 6 | 5 | 5 | 4 |
Stabilizer LithoFoam® (kg/m) | 0.6 | 0.6 | 0.6 | 0.6 |
Specimens | LithoPore®100 | LithoPore®200 | LithoPore®450 | LithoPore®600 |
---|---|---|---|---|
Thermal conductivity (W/m/K) | 0.05 | 0.08 | 0.14 | 0.24 |
Density (kg/m) | 100 | 200 | 450 | 600 |
Specific heat (J/g/K) | 435 | 380 | 250 | 178 |
Specimens | LithoPore®100 | LithoPore®200 | LithoPore®450 | LithoPore®600 |
---|---|---|---|---|
Elastic modulus (GPa) | 0.6 | 0.9 | 2.5 | 2.9 |
Poisson’s ratio | 0.3 | 0.3 | 0.2 | 0.2 |
Yield strength (MPa) | 0.45 | 0.9 | 4.2 | 7.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, S.-Y.; Lehmann, C.; Abd Elrahman, M.; Stephan, D. Pore Characteristics and Their Effects on the Material Properties of Foamed Concrete Evaluated Using Micro-CT Images and Numerical Approaches. Appl. Sci. 2017, 7, 550. https://doi.org/10.3390/app7060550
Chung S-Y, Lehmann C, Abd Elrahman M, Stephan D. Pore Characteristics and Their Effects on the Material Properties of Foamed Concrete Evaluated Using Micro-CT Images and Numerical Approaches. Applied Sciences. 2017; 7(6):550. https://doi.org/10.3390/app7060550
Chicago/Turabian StyleChung, Sang-Yeop, Christian Lehmann, Mohamed Abd Elrahman, and Dietmar Stephan. 2017. "Pore Characteristics and Their Effects on the Material Properties of Foamed Concrete Evaluated Using Micro-CT Images and Numerical Approaches" Applied Sciences 7, no. 6: 550. https://doi.org/10.3390/app7060550
APA StyleChung, S. -Y., Lehmann, C., Abd Elrahman, M., & Stephan, D. (2017). Pore Characteristics and Their Effects on the Material Properties of Foamed Concrete Evaluated Using Micro-CT Images and Numerical Approaches. Applied Sciences, 7(6), 550. https://doi.org/10.3390/app7060550