Virtual Synchronous Generator Control of Grid Connected Modular Multilevel Converters with an Improved Capacitor Voltage Balancing Method
<p>Multilevel converter topology: (<b>a</b>) MMC; (<b>b</b>) half-bridge and full-bridge SM.</p> "> Figure 2
<p>Block diagram of the proposed CVB-VSG control.</p> "> Figure 3
<p>VSG based control scheme.</p> "> Figure 4
<p>Flowchart of the CVB algorithm.</p> "> Figure 5
<p>Simulation results of applying CVB−VSG control and CVB−PQ control to the MMC. (<b>a</b>) Three−phase voltages and currents of the MMC. (<b>b</b>) Three−phase voltages and currents of the grid. (<b>c</b>) Estimation of the voltages of the SM capacitor of phase A by the CVB−PQ control. (<b>d</b>) Estimation of the voltages of the SM capacitor of phase A by the CVB-VSG control. (<b>e</b>) Estimation and measurement of phase A SM capacitor voltages for both commands. (<b>f</b>) Phase A circulating current. (<b>g</b>) Average value of DC current. (<b>h</b>) DC current. (<b>i</b>) Active and reactive power.</p> "> Figure 5 Cont.
<p>Simulation results of applying CVB−VSG control and CVB−PQ control to the MMC. (<b>a</b>) Three−phase voltages and currents of the MMC. (<b>b</b>) Three−phase voltages and currents of the grid. (<b>c</b>) Estimation of the voltages of the SM capacitor of phase A by the CVB−PQ control. (<b>d</b>) Estimation of the voltages of the SM capacitor of phase A by the CVB-VSG control. (<b>e</b>) Estimation and measurement of phase A SM capacitor voltages for both commands. (<b>f</b>) Phase A circulating current. (<b>g</b>) Average value of DC current. (<b>h</b>) DC current. (<b>i</b>) Active and reactive power.</p> "> Figure 6
<p>Total harmonic distortion of grid current.</p> "> Figure 7
<p>Experimental platform of the three-phase MMC.</p> "> Figure 8
<p>Experimental results of applying VSG and PQ control to the MMC. (<b>a</b>) Three-phase voltages of the MMC. (<b>b</b>) Three-phase voltages and currents of the grid. (<b>c</b>) Voltages of SM capacitors in phase B. (<b>d</b>) Phase A circulating current. (<b>e</b>) DC current. (<b>f</b>) Active and reactive power.</p> "> Figure 8 Cont.
<p>Experimental results of applying VSG and PQ control to the MMC. (<b>a</b>) Three-phase voltages of the MMC. (<b>b</b>) Three-phase voltages and currents of the grid. (<b>c</b>) Voltages of SM capacitors in phase B. (<b>d</b>) Phase A circulating current. (<b>e</b>) DC current. (<b>f</b>) Active and reactive power.</p> "> Figure 9
<p>Experimental results of applying CVB−VSG and CVB−PQ control to the MMC. (<b>a</b>) Three-phase voltages of the MMC. (<b>b</b>) Three-phase voltages and currents of the grid. (<b>c</b>) Voltages of SM capacitors in phase B. (<b>d</b>) Phase A circulating current. (<b>e</b>) DC current. (<b>f</b>) Active and reactive power.</p> ">
Abstract
:1. Introduction
2. MMC Modeling and Operating Principle
3. The Proposed Control System
3.1. VSG-Based Control of Grid-Connected MMC
3.2. Improved CVB Method
4. Discussion
4.1. Simulation Results
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, G.; Sun, K.; Jiang, S.; Lu, S.; Wang, Y. A modular DC/DC photovoltic generation system for HVDC grid connection. Chin. J. Electr. Eng. 2018, 4, 56–64. [Google Scholar]
- Wang, S.; Zhou, L.; Wang, T.; Chen, T.; Wang, Y. Fast protection strategy for DC transmission lines of MMC-based MT-HVDC grid. Chin. J. Electr. Eng. 2021, 7, 83–92. [Google Scholar] [CrossRef]
- Alemi-Rostami, M.; Rezazadeh, G. Selective harmonic elimination of a multilevel voltage source inverter using whale optimization algorithm. Int. J. Eng. 2021, 34, 1898–1904. [Google Scholar]
- Chandio, R.; Chachar, F.; Soomro, J.; Ansari, J.; Munir, H.; Zawbaa, H.; Kamel, S. Control and protection of MMC-based HVDC systems: A review. Energy Rep. 2023, 9, 1571–1588. [Google Scholar] [CrossRef]
- Hossain, M.; Shafiullah, M.; Abido, M. Battery Power Control Strategy for Intermittent Renewable Energy Integrated Modular Multilevel Converter-Based High-Voltage Direct Current Network. Sustainability 2023, 15, 2626. [Google Scholar] [CrossRef]
- Shahnazian, F.; Adabi, J.; Pouresmaeil, E.; Catalão, J. Interfacing modular multilevel converters for grid integration of renewable energy sources. Electr. Power Syst. Res. 2018, 160, 439–449. [Google Scholar] [CrossRef]
- Verdugo, C.; Candela, J.; Blaabjerg, F.; Rodriguez, P. Three-phase isolated multimodular converter in renewable energy distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 854–865. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Zheng, T.; Yang, X.; Guerrero, J. Thyristor-pair-and damping-submodule-based protection against valve-side single-phase-to-ground faults in MMC-MTDC systems. IEEE Trans. Power Deliv. 2021, 37, 3257–3269. [Google Scholar] [CrossRef]
- Vozikis, D.; Adam, G.P.; Rault, P.; Despouys, O.; Holliday, D. Enhanced modular multilevel converter for HVDC applications: Assessments of dynamic and transient responses to AC and DC faults. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 6997–7008. [Google Scholar] [CrossRef]
- Reddy, G.A.; Shukla, A. The enhanced modular multilevel converter with dc fault blocking capability. IEEE Trans. Power Electron. 2023, 38, 8571–8582. [Google Scholar] [CrossRef]
- Arévalo-Soler, J.; Sánchez-Sánchez, E.; Prieto-Araujo, E.; Gomis-Bellmunt, O. Impact analysis of energy-based control structures for grid-forming and grid-following MMC on power system dynamics based on eigen properties indices. Int. J. Electr. Power Energy Syst. 2022, 143, 108369. [Google Scholar] [CrossRef]
- Soomro, J.; Akhtar, F.; Hussain, R.; Ansari, J.A.; Munir, H. A detailed review of MMC circuit topologies and modelling issues. Int. Trans. Electr. Energy Syst. 2022, 2022, 8734010. [Google Scholar] [CrossRef]
- Barros, L.; Martins, A.; Pinto, J. A comprehensive review on modular multilevel converters, submodule topologies, and modulation techniques. Energies 2022, 15, 1078. [Google Scholar] [CrossRef]
- Hasan, N.; Rosmin, N.; Osman, D.; Musta’amal, A. Reviews on multilevel converter and modulation techniques. Renew. Sustain. Energy Rev. 2017, 80, 163–174. [Google Scholar] [CrossRef]
- Shen, K.; Zhao, D.; Zhao, G.; Wang, S. Photovoltaic supplied grid-connected modular multilevel converter with active power injection and reactive power compensation capability. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 7837–7842. [Google Scholar]
- Nataj, S.H.; Gholamian, S.; Rezanejad, M.; Mehrasa, M. Virtual synchronous generator-based control of modular multilevel converter for integration into weak grid. IET Renew. Power Gener. 2023, 17, 3097–3107. [Google Scholar]
- Belila, A.; Amirat, Y.; Benbouzid, M.; Berkouk, E.; Yao, G. Virtual synchronous generators for voltage synchronization of a hybrid PV-diesel power system. Int. J. Electr. Power Energy Syst. 2020, 117, 105677. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Zheng, X.; Gao, M. Virtual model predictive control for virtual synchronous generators to achieve coordinated voltage unbalance compensation in islanded micro grids. Int. J. Electr. Power Energy Syst. 2023, 146, 108756. [Google Scholar] [CrossRef]
- Ali, H.; Li, B.; Xu, Z.; Liu, H.; Xu, D. Virtual synchronous generator design based modular multilevel converter for microgrid frequency regulation. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–6. [Google Scholar]
- Gobburi, H.; Borghate, V.; Meshram, P. Voltage Balancing method for Modular Multilevel Converter with Sensorless Operation. In Proceedings of the 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), Arad, Romania, 20–22 May 2022; pp. 828–833. [Google Scholar]
- Dekka, A.; Wu, B.; Zargari, N.; Fuentes, R. Dynamic voltage balancing algorithm for modular multilevel converter: A unique solution. IEEE Trans. Power Electron. 2015, 31, 952–963. [Google Scholar] [CrossRef]
- Al-Khayyat, A.; Ridha, A.; Fadel, H. Performance analysis of capacitor voltage balancing in modular multilevel converter by sorting algorithm. Int. J. Power Electron. Drive Syst. 2022, 13, 1548. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiao, M.; Su, X.; Yang, G.; Lu, K.; Wu, Z. Modeling of conduction and switching losses for IGBT and FWD based on SVPWM in automobile electric drives. Appl. Sci. 2020, 10, 4539. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Pan, X.; Gong, W.; Zhu, Z.; Xu, S. Impedance modeling and analysis of series-connected modular multilevel converter (MMC) and its comparative study with conventional MMC for HVDC applications. IEEE Trans. Power Deliv. 2021, 37, 3270–3281. [Google Scholar] [CrossRef]
- Bensiali, H.; Khoucha, F.; Benrabah, A.; Belila, A.; Benbouzid, M. Comparative Analysis of Modular Multilevel Converters and Alternate Arm Converters for HVDC Applications. In Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities: Case Study: Tipasa, Algeria; Springer: Cham, Switzerland, 2022; pp. 312–321. [Google Scholar]
- Liu, X.; Sun, P.; Arraño-Vargas, F.; Konstantinou, G. Provision of synthetic inertia by alternate arm converters in VSC-HVDC systems. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021; pp. 1–5. [Google Scholar]
- Bensiali, H.; Khoucha, F.; Benrabah, A.; Benbouzid, M. An Improved Model Predictive Control for the Virtual Synchronous Generator Based on Modular Multilevel Converters. Electrotech. Rev. Elektroteh. Vestn. 2024, 91, 193–202. [Google Scholar]
- Ma, Y.; Lin, H.; Wang, Z.; Wang, T. Capacitor voltage balancing control of modular multilevel converters with energy storage system by using carrier phase-shifted modulation. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 1821–1828. [Google Scholar]
- Wang, S.; Liu, T.; Huang, X.; Yu, Y. Capacitor voltage balancing control with reducing the average switching frequency in MMC. J. Eng. 2019, 2019, 2375–2380. [Google Scholar] [CrossRef]
- Veerendra, A.S.; Mohamed, M.R.; Peddakapu, K.; Sekhar, C.P. Minimization of total harmonic distortion and enhancing voltage level for hybrid multilevel converter with different sources. Adv. Control Appl. Eng. Ind. Syst. 2020, 2, e58. [Google Scholar] [CrossRef]
- Muhammad, F.; Rasheed, H.; Ali, I.; Alroobaea, R.; Binmahfoudh, A. Design and control of modular multilevel converter for voltage sag mitigation. Energies 2022, 15, 1681. [Google Scholar] [CrossRef]
- Babayomi, O.; Zhang, Z.; Dragicevic, T.; Hu, J.; Rodriguez, J. Smart grid evolution: Predictive control of distributed energy resources—A review. Int. J. Electr. Power Energy Syst. 2023, 147, 108812. [Google Scholar] [CrossRef]
- Harbi, I.; Rodriguez, J.; Liegmann, E.; Makhamreh, H.; Heldwein, M.L.; Novak, M.; Rossi, M.; Abdelrahem, M.; Trabelsi, M.; Ahmed, M.; et al. Model-predictive control of multilevel inverters: Challenges, recent advances, and trends. IEEE Trans. Power Electron. 2023, 38, 10845–10868. [Google Scholar] [CrossRef]
- Akbari, E.; Shadlu, M.S. Model Predictive Control of Alternate Arm Converter with a Short-Overlap Period Under Steady-State and Transient Conditions. In Proceedings of the 2023 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Babol, Iran, 31 January–2 February 2023; pp. 1–7. [Google Scholar]
- Elserougi, A.; Daoud, M.I.; Massoud, A.M.; Abdel-Khalik, A.S.; Ahmed, S. Investigation of sensorless capacitor voltage balancing technique for modular multilevel converters. In Proceedings of the IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 1569–1574. [Google Scholar]
- Yin, T.; Wang, Y.; Wang, X.; Yin, S.; Sun, S.; Li, G. Modular multilevel converter with capacitor voltage self-balancing using reduced number of voltage sensors. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 1455–1459. [Google Scholar]
- Hashkavayi, M.B.; Barakati, S.M.; Haredasht, M.R.; Barahouei, V.; Torabi, S.H. Balancing of Capacitor Voltages with a Reduced Number of Voltage and Current Sensors in Alternate Arm Multilevel Converter (AAMC). In Proceedings of the 14th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), Babol, Iran, 31 January–2 February 2023; pp. 1–5. [Google Scholar]
- Daoud, M.; Massoud, A.; Elserougi, A.; Abdel-Khalik, A.; Ahmed, S. Sensor-less operation of hybrid boost modular multilevel converter for subsea multiphase medium voltage drives. In Proceedings of the 2017 IEEE Southern Power Electronics Conference (SPEC), Puerto Varas, Chile, 4–7 December 2017; pp. 1–5. [Google Scholar]
- Zoraghi-Jedi, M.; Barakati, S.M.; Rahmani-Haredasht, M.; Barahouei, V.; Yazdani, A. Capacitance health monitoring in the modular multilevel converter using a method with minimum number of sensors and computational burden. Int. J. Circuit Theory Appl. 2024, 52, 6343–6361. [Google Scholar] [CrossRef]
- Abushafa, O.S.; Dahidah, M.S.; Gadoue, S.M.; Atkinson, D.J. Submodule voltage estimation scheme in modular multilevel converters with reduced voltage sensors based on Kalman filter approach. IEEE Trans. Ind. Electron. 2018, 65, 7025–7035. [Google Scholar] [CrossRef]
- Wachal, R.; Jindal, A.; Dennetiere, S.; Saad, H.; Rui, Ø.; Cole, S.; Cole, S.; Zhang, L.; Song, Z.; Cole, S.; et al. Guide for the Development of Models for HVDC Converters in a HVDC Grid; Working Group B4.57, Cigre; CIGRE: Paris, France, 2014. [Google Scholar]
Parameters | Simulation | Experimental |
---|---|---|
DC voltage (VDC) | 400 V | 100 V |
AC voltage (VAC) | 155 V | 30 V |
AC frequency | 50 Hz | 50 Hz |
Power active | 6–7.5–9 Kw | 100–120 W |
Number of SMs per arm | 2 | 2 |
Capacitor value for a SM | 50 mF | 3.3 mF |
Arm inductance/arm resistor | 1 mH/0.5 Ω | 10 mH/0.5 Ω |
Phase inductor/phase resistor | 20 mH/0.5 Ω | 20 mH/0.5 Ω |
Control | THD | ΔIdc | ΔIcirc | ΔVc | Vcref–Vcestm |
---|---|---|---|---|---|
CVB-PQ | 0.45% | 28 A | 6.8 A | 0.4 V | 4.8 V |
CVB-VSG | 0.17% | 10 A | 2.3 A | 0.15 V | 1.7 V |
Control | ΔIdc | ΔIcirc | ΔVc | Vcref–Vcestm |
---|---|---|---|---|
PQ | 1.6 A | 3.6 A | 12 V | 100 V |
VSG | 1.4 A | 3.4 A | 9 V | 100 V |
CVB-PQ | 1 A | 1.6 A | 1.5 V | 7 V |
CVB-VSG | 0.9 A | 1.4 A | 1.5 V | 3 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bensiali, H.; Khoucha, F.; Benrabah, A.; Benhamimid, L.; Benbouzid, M. Virtual Synchronous Generator Control of Grid Connected Modular Multilevel Converters with an Improved Capacitor Voltage Balancing Method. Appl. Sci. 2025, 15, 2865. https://doi.org/10.3390/app15052865
Bensiali H, Khoucha F, Benrabah A, Benhamimid L, Benbouzid M. Virtual Synchronous Generator Control of Grid Connected Modular Multilevel Converters with an Improved Capacitor Voltage Balancing Method. Applied Sciences. 2025; 15(5):2865. https://doi.org/10.3390/app15052865
Chicago/Turabian StyleBensiali, Haroun, Farid Khoucha, Abdeldjabar Benrabah, Lakhdar Benhamimid, and Mohamed Benbouzid. 2025. "Virtual Synchronous Generator Control of Grid Connected Modular Multilevel Converters with an Improved Capacitor Voltage Balancing Method" Applied Sciences 15, no. 5: 2865. https://doi.org/10.3390/app15052865
APA StyleBensiali, H., Khoucha, F., Benrabah, A., Benhamimid, L., & Benbouzid, M. (2025). Virtual Synchronous Generator Control of Grid Connected Modular Multilevel Converters with an Improved Capacitor Voltage Balancing Method. Applied Sciences, 15(5), 2865. https://doi.org/10.3390/app15052865