A Simulation Study on Pressure Control in Oil Well Drilling Using Gain-Scheduled PID Controllers
<p>A schematic of a well drilling system with fluid flow dynamics and pressure control.</p> "> Figure 2
<p>Response of output signal for different operational points.</p> "> Figure 3
<p>Block diagram of IMC structure for bit pressure control in drilling systems.</p> "> Figure 4
<p>Optimal parameters of the two-degrees-of-freedom IMC controller for four levels of robustness [<a href="#B29-applsci-15-02748" class="html-bibr">29</a>].</p> "> Figure 5
<p>Transient response of IMC+2DOF-controlled system at different depths and robustness levels (<span class="html-italic">M</span><span class="html-italic">s</span>). (<b>a</b>) 500 m, (<b>b</b>) 1000 m, (<b>c</b>) 2000 m, (<b>d</b>) 3000 m, (<b>e</b>) 4000 m, and (<b>f</b>) 5000 m.</p> "> Figure 6
<p>Structure of GS controller in Simulink language.</p> "> Figure 7
<p>Structure of MRAC in Simulink language.</p> "> Figure 8
<p>Simulating real-problem situations.</p> "> Figure 9
<p>Pressure tracking simulation for different depths. (<b>a</b>) 500 m, (<b>b</b>) 1000 m, (<b>c</b>) 2000 m, (<b>d</b>) 3000 m, (<b>e</b>) 4000 m, and (<b>f</b>) 5000 m.</p> "> Figure 10
<p>Loss of circulation simulation for different depths. (<b>a</b>) 500 m, (<b>b</b>) 1000 m, (<b>c</b>) 2000 m, (<b>d</b>) 3000 m, (<b>e</b>) 4000 m, and (<b>f</b>) 5000 m.</p> "> Figure 11
<p>Kick simulation for different depths. (<b>a</b>) 500 m, (<b>b</b>) 1000 m, (<b>c</b>) 2000 m, (<b>d</b>) 3000 m, (<b>e</b>) 4000 m, and (<b>f</b>) 5000 m.</p> "> Figure 12
<p>Mud loss simulation for different depths. (<b>a</b>) 500 m, (<b>b</b>) 1000 m, (<b>c</b>) 2000 m, (<b>d</b>) 3000 m, (<b>e</b>) 4000 m, and (<b>f</b>) 5000 m.</p> ">
Abstract
:1. Introduction
2. Wellbore Pressure Model
2.1. Linearization of Bottom-Hole Pressure Dynamics
2.2. Implementation of the Process Model
3. Design of PID Parameters
4. Results
4.1. Specification of Gain Scheduling (GS) Controller
4.2. GS Controller and MRAC: Implementation
4.3. GS Controller and MRAC: Simulation
4.3.1. Pressure Tracking Control
4.3.2. Power Loss
4.3.3. Kick
4.3.4. Mud Loss
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description |
Va | Volume of annular region |
Vd | Volume of drill string region |
Pp | Main pump pressure |
Pe | Throttle valve pressure |
Pb | Pressure on bit |
qe | Throttle valve flow |
qb | Drill outlet flow |
qp | Main pump flow |
qr | Flow from reservoir to well |
βa | Compressibility modulus of annular region |
βd | Compressibility modulus of column region |
qc | Backpressure pump flow |
Ma | Mass of annular region |
Md | Mass of drill string region |
M | Sum of Ma and Mc |
ρa | Density of annular region |
ρd | Density of drill string region |
hb | Drill depth |
g | Gravity |
Fa | Friction force in annular region |
Fd | Friction force in drill string region |
References
- Atchison, B. Automated well control: A step change in safety. Digit. Chem. Eng. 2022, 3, 100022. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, B.; Feng, K.; Wang, Z.; Sun, B. Study on reliability of control system in deepwater CBHP MPD system. Eng. Fail. Anal. 2024, 161, 108320. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, B.; Wang, Z.; Mu, X.; Sun, D. Multiphase throttling characteristic analysis and structure optimization design of throttling valve in managed pressure drilling. Energy 2023, 262, 125619. [Google Scholar] [CrossRef]
- Radwan, A.E. Drilling in Complex Pore Pressure Regimes: Analysis of Wellbore Stability Applying the Depth of Failure Approach. Energies 2022, 15, 7872. [Google Scholar] [CrossRef]
- Khalifeh, M.; Penkala, L.; Saasen, A.; Aase, B.; Omland, T.H.; Taugbøl, K.; Reinås, L. Gel pills for downhole pressure control during oil and gas well drilling. Energies 2020, 13, 6318. [Google Scholar] [CrossRef]
- Souas, F.; Safri, A.; Benmounah, A. A review on the rheology of heavy crude oil for pipeline transportation. Pet. Res. 2021, 6, 116–136. [Google Scholar] [CrossRef]
- Peng, H.; Xu, Z.D.; Lu, H.; Xi, D.; Xia, Z.; Yang, C.; Wang, B. A review of underground transport infrastructure monitoring in CCS: Technology and Engineering Practice. Process Saf. Environ. Prot. 2024, 190, 726–745. [Google Scholar] [CrossRef]
- Zhou, X.; Duan, Y.; Sang, Y.; Zhou, L.; Zeng, B.; Song, Y.; Dong, Y.; Hu, J. Induced Casing Deformation in Hydraulically Fractured Shale Gas Wells: Risk Assessment, Early Warning, and Mitigation. Processes 2024, 12, 2057. [Google Scholar] [CrossRef]
- Lordejani, S.N.; Besselink, B.; Abbasi, M.H.; Kaasa, G.O.; Schilders, W.H.A.; Van De Wouw, N. Control-Oriented Modeling for Managed Pressure Drilling Automation Using Model Order Reduction. IEEE Trans. Control Syst. Technol. 2021, 29, 1161–1174. [Google Scholar] [CrossRef]
- Rehman, A.; Ghias, R.; Ahmad, I.; Iqbal Sherazi, H. Advance Optimized Nonlinear Control Strategies for Manage Pressure Drilling. IEEE Access 2024, 12, 73436–73450. [Google Scholar] [CrossRef]
- Duplyakin, D.; Beckers, K.F.; Siler, D.L.; Martin, M.J.; Johnston, H.E. Modeling Subsurface Performance of a Geothermal Reservoir Using Machine Learning. Energies 2022, 15, 967. [Google Scholar] [CrossRef]
- Wang, J.; Deng, S.; Li, J.; Yang, H.; Liu, G. Development of a multiphase variable mass flow model and its application in well control for variable gradient managed pressure drilling. Energy Rep. 2023, 9, 3358–3368. [Google Scholar] [CrossRef]
- Wang, G.; Lv, Z.; Zhong, L.; Li, Z.; Fu, Q.; Li, Y.; He, Y.; Liu, H. Hydraulic modeling study and control algorithm design of double-layer pipe dual-gradient drilling. Geoenergy Sci. Eng. 2024, 240, 212926. [Google Scholar] [CrossRef]
- Erge, O.; Gu, Q.; Chen, D.; van Oort, E. MPD choke control considering the thixotropic gelation behavior of drilling fluids. J. Pet. Sci. Eng. 2022, 208, 109793. [Google Scholar] [CrossRef]
- Gorjizadeh, H.; Ghalehnoie, M.; Negahban, S.; Nikoofard, A. Fuzzy controller design for constant bottomhole pressure drilling under operational/physical constraints. J. Pet. Sci. Eng. 2022, 212, 110335. [Google Scholar] [CrossRef]
- Liao, Y.; Sun, Q.; Wang, Z.; Sun, X.; Lou, W.; Sun, B. Modeling of wellbore multiphase flow with free gas influx during horizontal drilling in marine hydrate reservoirs. J. Nat. Gas Sci. Eng. 2022, 97, 104375. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, Y.; Liang, H.; Li, Y.; Yuan, X. Research on remote intelligent control technology of throttling and back pressure in managed pressure drilling. Petroleum 2021, 7, 222–229. [Google Scholar] [CrossRef]
- Pazoki, D.; Nikoofard, A.; Sedigh, A.K. Heave attenuation in offshore managed pressure drilling with an integral sliding mode controller. Appl. Ocean Res. 2024, 145, 103932. [Google Scholar] [CrossRef]
- Mlayeh, R. Stability analysis of pressure and penetration rate in rotary drilling system. WSEAS Trans. Syst. 2021, 20, 324–330. [Google Scholar] [CrossRef]
- Yang, H.W.; Li, J.; Jiang, J.W.; Zhang, H.; Guo, B.Y.; Zhang, G.; Chen, W. A dynamic managed pressure well-control method for rapid treatment of gas kick in deepwater managed pressure drilling. Pet. Sci. 2022, 19, 2297–2313. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, X. An improved particle swarm algorithm to optimize PID neural network for pressure control strategy of managed pressure drilling. Neural Comput. Appl. 2020, 32, 1581–1592. [Google Scholar] [CrossRef]
- Gu, Q.; Fallah, A.; Feng, T.; Bakshi, S.; Chen, D.; Ashok, P.; Moore, D.; van Oort, E. A novel dilution control strategy for gas kick handling and riser gas unloading mitigation in deepwater drilling. J. Pet. Sci. Eng. 2021, 196, 107973. [Google Scholar] [CrossRef]
- He, M.; Chen, X.; Xu, M.; Chen, H. Inversion-based model for quantitative interpretation by a dual-measurement points in managed pressure drilling. Process Saf. Environ. Prot. 2022, 165, 969–976. [Google Scholar] [CrossRef]
- Sheikhi, M.A.; Nikoofard, A.; Khaki-Sedigh, A. Control of managed pressure drilling systems using nonlinear predictive generalized minimum variance approach based on a Volterra model. ISA Trans. 2022, 128, 380–390. [Google Scholar] [CrossRef]
- Tikhonov, V.S.; Bukashkina, O.S.; Deshpande, K.M.; Liapidevskii, V.Y. Reconstruction of the MPD system parameters at the gas kicks into well with the measured surface data in situ by the mathematical modeling. J. Pet. Sci. Eng. 2021, 205, 108804. [Google Scholar] [CrossRef]
- Naderi Lordejani, S.; Besselink, B.; Schilders, W.H.A.; van de Wouw, N. Model complexity reduction and controller design for managed pressure drilling automation. J. Process Control 2023, 122, 69–83. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; Liu, Y.; Xia, X.; Xiao, F.; Zheng, N. Managed Pressure Drilling Technology: A Research on the Formation Adaptability. Fluid Dyn. Mater. Process. 2022, 18, 1865–1875. [Google Scholar] [CrossRef]
- Rivera, D.E.; Manfred, M.; Skogestad, S. Internal Model Control. 4. PID Controller Design. Ind. Eng. Chemestry Process Des. Dev. 1986, 25, 49–61. [Google Scholar] [CrossRef]
- Long, Z.; Li, J.; Yang, H.; Chen, W.; Zhang, G.; Wang, B.; Wang, W.; Luo, M.; Li, W.; Yin, Z.; et al. Methods and experiments for automatic control of surface back pressure based on dung beetle optimizer-PID controller. Process Saf. Environ. Prot. 2024, 191, 360–374. [Google Scholar] [CrossRef]
- Xiao, K.; Li, Y.; Yang, P.; Zhang, Y.; Zhao, Y.; Pu, X. Study on IMC-PID Control of Once-Through Steam Generator for Small Fast Reactor. Energies 2022, 15, 7475. [Google Scholar] [CrossRef]
- Jin, Q.B.; Liu, Q. Analytical IMC-PID design in terms of performance/robustness tradeoff for integrating processes: From 2-Dof to 1-Dof. J. Process Control 2014, 24, 22–32. [Google Scholar] [CrossRef]
- Zhou, C.; Shen, Y. A PID Control Method Based on Internal Model Control to Suppress Vibration of the Transmission Chain of Wind Power Generation System. Energies 2022, 15, 5919. [Google Scholar] [CrossRef]
- Zhu, Z.; Song, X.; Zhang, R.; Li, G.; Han, L.; Hu, X.; Li, D.; Yang, D.; Qin, F. A Hybrid Neural Network Model for Predicting Bottomhole Pressure in Managed Pressure Drilling. Appl. Sci. 2022, 12, 6728. [Google Scholar] [CrossRef]
- Fang, Q.; Meng, Y.; Wei, N.; Xu, C.; Li, G. A hydraulic model for multiphase flow based on the drift flux model in managed pressure drilling. Energies 2019, 12, 3930. [Google Scholar] [CrossRef]
- Hao, G.; Qingshan, X.; Shuqing, C.; Liuyu; Fang, S.; Regis, K.L.A.; Ke, W.; Xiang, S. The Practice Of Integrated E-cdTM & MPD in HTHP Wells. J. Appl. Sci. Eng. 2023, 17, 2275–2283. [Google Scholar] [CrossRef]
- Park, J.; Price, C.; Pixton, D.; Aghito, M.; Nybø, R.; Bjørkevoll, K.; Hedengren, J.D. Model predictive control and estimation of managed pressure drilling using a real-time high fidelity flow model. ISA Trans. 2020, 105, 256–268. [Google Scholar] [CrossRef]
- Elmousalami, H.; Sakr, I. Artificial intelligence for drilling lost circulation: A systematic literature review. Geoenergy Sci. Eng. 2024, 239, 212837. [Google Scholar] [CrossRef]
- Abbasi, M.H.; Iapichino, L.; Naderi Lordejani, S.; Schilders, W.; van de Wouw, N. Reduced basis method for managed pressure drilling based on a model with local nonlinearities. Int. J. Numer. Methods Eng. 2020, 121, 5178–5199. [Google Scholar] [CrossRef]
- Fallah, A.H.; Gu, Q.; Ma, Z.; Karimi Vajargah, A.; Chen, D.; Ashok, P.; van Oort, E.; May, R. Temperature dynamics and its effects on gas influx handling during managed pressure drilling operations. J. Nat. Gas Sci. Eng. 2020, 83, 103614. [Google Scholar] [CrossRef]
- Di Maio, F.; Baraldi, P.; Eslamian, A.; Zio, E.; Jacinto, C.M.C. A dynamic event tree for a blowout accident in an oil deep-water well equipped with a managed pressure drilling condition monitoring and operation system. J. Loss Prev. Process Ind. 2022, 79, 104834. [Google Scholar] [CrossRef]
- Amiri, S. Scrutinizing the influence of an adaptive fuzzy sliding mode control strategy on the regulation of constant BHP control. Geoenergy Sci. Eng. 2024, 241, 213110. [Google Scholar] [CrossRef]
Parameters | Value | Units |
---|---|---|
βa | 7000 | [Bar] |
βd | 11,000 | [Bar] |
ρa | 0.0119 | 10−5 [kg/m3] |
ρd | 0.0125 | 10−5 [kg/m3] |
qr | 0.001 | [m3/s] |
qb | 0.015 | [m3/s] |
da | 0.134 | [m] |
dd | 0.151 | [m] |
Aa | 0.0481 | [m2] |
Ad | 0.0141 | [m2] |
Depth [m] | 500 | 1000 | 2000 | 3000 | 4000 | 5000 |
---|---|---|---|---|---|---|
Va [m3] | 24.07 | 48.14 | 96.29 | 144.43 | 192.58 | 240.72 |
Vd [m3] | 7.05 | 14.10 | 28.21 | 42.31 | 56.41 | 70.51 |
Ma [10−5 kg/m4] | 399.2 | 798.4 | 1596.7 | 2395.1 | 3193.5 | 3991.9 |
Md [10−5 kg/m4] | 1431.5 | 2862.9 | 5725.9 | 8588.8 | 11,452 | 14,315 |
Fa [10−5 m7/kg] | 3942.7 | 7885.3 | 15,771 | 23,656 | 31,541 | 39,427 |
Fd [10−5 m7/kg] | 44,194 | 88,388 | 176,780 | 265,160 | 353,550 | 441,940 |
Depth [m] | Robustness | Disturbance | Transient Response | Controller Parameters | |||
---|---|---|---|---|---|---|---|
Ms | IEA-d | Rise Time [s] | Settling Time [s] | kp | ti | td | |
500 | 2 | 83.788 | 6.2954 | 13.6552 | 0.0012 | 9.6654 | 0.0218 |
1.8 | 109.683 | 8.5864 | 19.0488 | 0.0010 | 11.3630 | 0.0238 | |
1.6 | 160.113 | 12.1313 | 24.8847 | 0.0009 | 14.1560 | 0.0269 | |
1.42 | 281.379 | 18.3255 | 35.4258 | 0.0007 | 19.4135 | 0.0317 | |
1000 | 2 | 42.025 | 5.809 | 18.986 | 0.0023 | 9.6649 | 0.0232 |
1.8 | 54.942 | 8.320 | 20.528 | 0.0021 | 11.3617 | 0.0254 | |
1.6 | 80.053 | 12.986 | 25.145 | 0.0018 | 14.1527 | 0.0287 | |
1.42 | 140.379 | 18.861 | 35.384 | 0.0014 | 19.4071 | 0.0339 | |
2000 | 2 | 21.224 | 5.4592 | 21.8969 | 0.0046 | 9.6647 | 0.0241 |
1.8 | 27.845 | 7.3169 | 24.1725 | 0.0041 | 11.3610 | 0.0263 | |
1.6 | 40.672 | 13.0187 | 28.9655 | 0.0035 | 14.1509 | 0.0297 | |
1.42 | 71.318 | 20.0177 | 38.6472 | 0.0027 | 19.4035 | 0.0351 | |
3000 | 2 | 14.268 | 3.5231 | 27.6803 | 0.0068 | 9.6645 | 0.0246 |
1.8 | 18.723 | 4.3912 | 29.6356 | 0.0061 | 11.3605 | 0.0268 | |
1.6 | 27.346 | 16.9949 | 35.8627 | 0.0052 | 14.1498 | 0.0303 | |
1.42 | 48.125 | 23.7590 | 48.8588 | 0.0040 | 19.4013 | 0.0358 | |
4000 | 2 | 10.816 | 5.768 | 22.535 | 0.00895 | 9.66440 | 0.02489 |
1.8 | 14.190 | 7.506 | 24.022 | 0.00801 | 11.36025 | 0.02720 | |
1.6 | 20.743 | 11.390 | 28.391 | 0.00683 | 14.14911 | 0.03072 | |
1.42 | 36.503 | 18.356 | 38.646 | 0.00533 | 19.39991 | 0.03626 | |
5000 | 2 | 8.721 | 5.815 | 22.413 | 0.01108 | 9.66430 | 0.02522 |
1.8 | 11.433 | 7.539 | 23.548 | 0.00993 | 11.35996 | 0.02756 | |
1.6 | 16.713 | 11.290 | 27.787 | 0.00846 | 14.14839 | 0.03113 | |
1.42 | 29.406 | 18.112 | 38.052 | 0.00660 | 19.39848 | 0.03673 |
Depth [m] | Controller Parameters | ||
---|---|---|---|
kp | ti | td | |
500 | 0.0010 | 11.363 | 0.0238 |
1000 | 0.0021 | 11.3617 | 0.0254 |
2000 | 0.0041 | 11.361 | 0.0263 |
3000 | 0.0061 | 11.3605 | 0.0268 |
4000 | 0.008 | 11.36 | 0.0272 |
5000 | 0.0099 | 11.36 | 0.0276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarado-Silva, C.A.; de Oliveira, G.C.R.; Gamboa, A.A.R.; Gaytan-Reyna, K.L.; Guidi, E.S.; Silva, F.d.A.; Gamarra-Rosado, V.O. A Simulation Study on Pressure Control in Oil Well Drilling Using Gain-Scheduled PID Controllers. Appl. Sci. 2025, 15, 2748. https://doi.org/10.3390/app15052748
Alvarado-Silva CA, de Oliveira GCR, Gamboa AAR, Gaytan-Reyna KL, Guidi ES, Silva FdA, Gamarra-Rosado VO. A Simulation Study on Pressure Control in Oil Well Drilling Using Gain-Scheduled PID Controllers. Applied Sciences. 2025; 15(5):2748. https://doi.org/10.3390/app15052748
Chicago/Turabian StyleAlvarado-Silva, Carlos A., Geraldo Cesar Rosario de Oliveira, Alexander A. R. Gamboa, Karina Liliana Gaytan-Reyna, Erick Siqueira Guidi, Fernando de Azevedo Silva, and Victor Orlando Gamarra-Rosado. 2025. "A Simulation Study on Pressure Control in Oil Well Drilling Using Gain-Scheduled PID Controllers" Applied Sciences 15, no. 5: 2748. https://doi.org/10.3390/app15052748
APA StyleAlvarado-Silva, C. A., de Oliveira, G. C. R., Gamboa, A. A. R., Gaytan-Reyna, K. L., Guidi, E. S., Silva, F. d. A., & Gamarra-Rosado, V. O. (2025). A Simulation Study on Pressure Control in Oil Well Drilling Using Gain-Scheduled PID Controllers. Applied Sciences, 15(5), 2748. https://doi.org/10.3390/app15052748