Sounds and Natures Do Often Agree: Prediction of Esports Players’ Performance in Fighting Games Based on the Operating Sounds of Game Controllers
<p>Experimental setup for measuring controller operation sounds.</p> "> Figure 2
<p>Difference in maximum sound pressure level <math display="inline"><semantics> <msub> <mi>L</mi> <mi>max</mi> </msub> </semantics></math> for (<b>left</b>) player level and (<b>right</b>) game controller.</p> "> Figure 3
<p>Relationship between <math display="inline"><semantics> <msub> <mi>L</mi> <mi>max</mi> </msub> </semantics></math> and (<b>upper left</b>) QOL score, (<b>upper right</b>) TMD score, (<b>lower left</b>) positive engagement score of the WASEDA, as well as the (<b>lower right</b>) in-game score.</p> ">
Abstract
:1. Introduction
- Q1.
- How do the sound characteristics of game controller operations reflect players’ gaming skills?
- Q2.
- To what extent can the maximum sound pressure level () of controller operation sounds predict players’ psychological states and in-game performance?
2. Experiment 1: Differences in Controller Operation Sounds Based on Player Skill
2.1. Participants
2.2. Method
2.3. Analysis
2.4. Results
2.5. Discussion
3. Experiment 2: Differences in Controller Operation Sounds Based on Player Conditions
3.1. Participants
3.2. Method
3.3. Analysis
3.4. Results
3.5. Discussion
3.5.1. Limitations
3.5.2. Practical Implementations
4. Conclusions and Future Work
- Skilled players produce louder sounds during game controller operations as opposed to beginners. This could indicate that the more skillful the player, the quicker they press buttons and pads.
- The maximum sound pressure level of the sound of a player operating a game controller can be utilized for predicting the pre-match mood, including QOL and TMD scores obtained by the CC-QCSL-45 and the POMS2, and the player’s in-game performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Famitsu Game Hakusho 2023. 2023. Available online: https://f-ism.net/fgh/2023.html (accessed on 3 January 2025).
- Newzoo Global Games Market Report 2020. 2020. Available online: https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2020-light-version/ (accessed on 3 January 2025).
- Taylor, T.L. Raising the Stakes: E-Sports and the Professionalization of Computer Gaming; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Seo, Y. Electronic sports: A new marketing landscape of the experience economy. J. Mark. Manag. 2013, 29, 1542–1560. [Google Scholar] [CrossRef]
- Faust, K.; Meyer, J.; Griffiths, M.D. Competitive and professional gaming: Discussing potential benefits of scientific study. Int. J. Cyber Behav. Psychol. Learn. (IJCBPL) 2013, 3, 67–77. [Google Scholar] [CrossRef]
- Apperley, T.H. Genre and game studies: Toward a critical approach to video game genres. Simul. Gaming 2006, 37, 6–23. [Google Scholar] [CrossRef]
- Kim, Y.; Ross, S.D. An exploration of motives in sport video gaming. Int. J. Sport. Mark. Spons. 2006, 8, 28–40. [Google Scholar] [CrossRef]
- Pizzo, A.D.; Baker, B.J.; Na, S.; Lee, M.A.; Kim, D.; Funk, D.C. eSport vs sport: A comparison of spectator motives. Sport Mark. Q. 2018, 27, 108–123. [Google Scholar]
- Bowditch, L.; Chapman, J.; Naweed, A. Do coping strategies moderate the relationship between escapism and negative gaming outcomes in World of Warcraft (MMORPG) players? Comput. Hum. Behav. 2018, 86, 69–76. [Google Scholar] [CrossRef]
- Miah, A.; Fenton, A.; Chadwick, S. Virtual reality and sports: The rise of mixed, augmented, immersive, and esports experiences. In 21st Century Sports: How Technologies Will Change Sports in the Digital Age; Springer: Cham, Switzerland, 2020; pp. 249–262. [Google Scholar]
- Turkay, S.; Formosa, J.; Cuthbert, R.; Adinolf, S.; Brown, R.A. Virtual Reality Esports-Understanding Competitive Players’ Perceptions of Location Based VR Esports. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Online, 8–13 May 2021; pp. 1–15. [Google Scholar]
- Anðelić, B.; Bianco, A.; Maksimović, N.; Todorović, N.; Drid, P. A milestone in the era of esports: The Olympics through the lens of virtual reality. Front. Psychol. 2022, 13, 990189. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Huang, Z.; Feng, Q.; Chang, X.; Yan, K. Co-transformation of digital health and esport in metaverse: Moderating effects of digital personality on mental health in multiplayer online battle arena (MOBA). Int. J. Environ. Res. Public Health 2022, 20, 760. [Google Scholar] [CrossRef] [PubMed]
- Bányai, F.; Griffiths, M.D.; Király, O.; Demetrovics, Z. The psychology of esports: A systematic literature review. J. Gambl. Stud. 2019, 35, 351–365. [Google Scholar] [CrossRef]
- Pedraza-Ramirez, I.; Musculus, L.; Raab, M.; Laborde, S. Setting the scientific stage for esports psychology: A systematic review. Int. Rev. Sport Exerc. Psychol. 2020, 13, 319–352. [Google Scholar] [CrossRef]
- Pluss, M.; Novak, A.R.; Bennett, K.J.; Panchuk, D.; Coutts, A.J.; Fransen, J. Perceptual-motor abilities underlying expertise in esports. J. Expert. 2020, 3, 133–143. [Google Scholar]
- Jang, W.W.; Kim, K.A.; Byon, K.K. Social atmospherics, affective response, and behavioral intention associated with esports events. Front. Psychol. 2020, 11, 551969. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Birch, P.D.; Bright, D. Identifying stressors and coping strategies of elite esports competitors. Int. J. Gaming Comput.-Mediat. Simul. (IJGCMS) 2019, 11, 22–39. [Google Scholar] [CrossRef]
- Railsback, D.; Caporusso, N. Investigating the human factors in eSports performance. In Proceedings of the Advances in Human Factors in Wearable Technologies and Game Design: Proceedings of the AHFE 2018 International Conferences on Human Factors and Wearable Technologies, and Human Factors in Game Design and Virtual Environments, Orlando, FL, USA, 21–25 July 2018; Springer: Cham, Swittzerland, 2019; pp. 325–334. [Google Scholar]
- Paravizo, E.; de Souza, R.R.L. Playing for real: An exploratory analysis of professional esports athletes’ work. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018) Volume V: Human Simulation and Virtual Environments, Work With Computing Systems (WWCS), Process Control 20; Springer: Cham, Swittzerland, 2019; pp. 507–515. [Google Scholar]
- Kou, Y.; Gui, X. Emotion regulation in esports gaming: A qualitative study of league of legends. Proc. ACM Hum.-Comput. Interact. 2020, 4, 1–25. [Google Scholar] [CrossRef]
- Poulus, D.; Coulter, T.J.; Trotter, M.G.; Polman, R. Stress and coping in esports and the influence of mental toughness. Front. Psychol. 2020, 11, 521465. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.Y.C.; Chung, P.K.; Ou, K.; Leung, K.M. Perception of Hong Kong teenagers and young adults on esports participation: A qualitative study using theory of planned behavior. Front. Psychol. 2021, 12, 650000. [Google Scholar] [CrossRef] [PubMed]
- Toth, A.J.; Kowal, M.; Campbell, M.J. The color-word stroop task does not differentiate cognitive inhibition ability among esports gamers of varying expertise. Front. Psychol. 2019, 10, 497707. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Ahmad, S.L.; Hassan, T.; Yuen, K.; Douris, P.; Zwibel, H.; DiFrancisco-Donoghue, J. Physiological and cognitive functions following a discrete session of competitive esports gaming. Front. Psychol. 2020, 11, 534802. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, P.; Dobrowolski, P.; Zawadzki, B. The association between personality traits and esports performance. Front. Psychol. 2020, 11, 503779. [Google Scholar] [CrossRef]
- Trotter, M.G.; Coulter, T.J.; Davis, P.A.; Poulus, D.R.; Polman, R. Examining the impact of school esports program participation on student health and psychological development. Front. Psychol. 2022, 12, 807341. [Google Scholar] [CrossRef]
- Trotter, M.G.; Obine, E.A.; Sharpe, B.T. Self-regulation, stress appraisal, and esport action performance. Front. Psychol. 2023, 14, 1265778. [Google Scholar] [CrossRef] [PubMed]
- Al Dafai, S. Conventions within eSports: Exploring Similarities in Design. In Proceedings of the DiGRA/FDG, Dundee, UK, 1–6 August 2016. [Google Scholar]
- Dehpanah, A.; Ghori, M.F.; Gemmell, J.; Mobasher, B. The evaluation of rating systems in online free-for-all games. In Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and IKE 2020; Springer: Cham, Switzerland, 2021; pp. 131–151. [Google Scholar]
- Pradhan, S.; Abdourazakou, Y. “power ranking” professional circuit esports teams using multi-criteria decision-making (mcdm). J. Sports Anal. 2020, 6, 61–73. [Google Scholar] [CrossRef]
- Urbaniak, K.; Wątróbski, J.; Sałabun, W. Identification of players ranking in e-sport. Appl. Sci. 2020, 10, 6768. [Google Scholar] [CrossRef]
- Nagorsky, E.; Wiemeyer, J. The structure of performance and training in esports. PLoS ONE 2020, 15, e0237584. [Google Scholar] [CrossRef]
- Abramov, S.; Korotin, A.; Somov, A.; Burnaev, E.; Stepanov, A.; Nikolaev, D.; Titova, M.A. Analysis of video game players’ emotions and team performance: An esports tournament case study. IEEE J. Biomed. Health Inform. 2021, 26, 3597–3606. [Google Scholar] [CrossRef]
- Vizer, L.M.; Zhou, L.; Sears, A. Automated stress detection using keystroke and linguistic features: An exploratory study. Int. J. Hum.-Comput. Stud. 2009, 67, 870–886. [Google Scholar] [CrossRef]
- Ghosh, S.; Hiware, K.; Ganguly, N.; Mitra, B.; De, P. Emotion detection from touch interactions during text entry on smartphones. Int. J. Hum.-Comput. Stud. 2019, 130, 47–57. [Google Scholar] [CrossRef]
- Sağbaş, E.A.; Korukoglu, S.; Balli, S. Stress detection via keyboard typing behaviors by using smartphone sensors and machine learning techniques. J. Med. Syst. 2020, 44, 68. [Google Scholar] [CrossRef]
- Lee, P.M.; Tsui, W.H.; Hsiao, T.C. The influence of emotion on keyboard typing: An experimental study using auditory stimuli. PLoS ONE 2015, 10, e0129056. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.M.; Ayesh, A.; Stacey, M. Continuous stress monitoring under varied demands using unobtrusive devices. Int. J. Hum.-Interact. 2020, 36, 326–340. [Google Scholar] [CrossRef]
- Lim, Y.M.; Ayesh, A.; Stacey, M. The effects of typing demand on emotional stress, mouse and keystroke behaviours. In Intelligent Systems in Science and Information 2014: Extended and Selected Results from the Science and Information Conference 2014; Springer: Cham, Switzerland, 2015; pp. 209–225. [Google Scholar]
- Lim, Y.M.; Ayesh, A.; Stacey, M. Using mouse and keyboard dynamics to detect cognitive stress during mental arithmetic. In Intelligent Systems in Science and Information 2014: Extended and Selected Results from the Science and Information Conference 2014; Springer: Cham, Switzerland, 2015; pp. 335–350. [Google Scholar]
- Pepa, L.; Sabatelli, A.; Ciabattoni, L.; Monteriu, A.; Lamberti, F.; Morra, L. Stress detection in computer users from keyboard and mouse dynamics. IEEE Trans. Consum. Electron. 2020, 67, 12–19. [Google Scholar] [CrossRef]
- Subhani, A.R.; Mumtaz, W.; Saad, M.N.B.M.; Kamel, N.; Malik, A.S. Machine learning framework for the detection of mental stress at multiple levels. IEEE Access 2017, 5, 13545–13556. [Google Scholar] [CrossRef]
- Zhai, J.; Barreto, A.B.; Chin, C.; Li, C. Realization of stress detection using psychophysiological signals for improvement of human-computer interactions. In Proceedings of the IEEE SoutheastCon, Ft. Lauderdale, FL, USA, 8–10 April 2005; pp. 415–420. [Google Scholar]
- Salomao, L.A.T.; Mahfouf, M.; El-Samahy, E.; Ting, C.H. Psychophysiologically based real-time adaptive general type 2 fuzzy modeling and self-organizing control of operator’s performance undertaking a cognitive task. IEEE Trans. Fuzzy Syst. 2016, 25, 43–57. [Google Scholar] [CrossRef]
- Cowley, B. Psychophysiology and high-performance cognition—A brief review of the literature. PeerJ Prepr. 2015, 3, e1373v1. [Google Scholar]
- Barreto, A.; Zhai, J.; Adjouadi, M. Non-intrusive physiological monitoring for automated stress detection in human-computer interaction. In Proceedings of the Human–Computer Interaction: IEEE International Workshop, HCI 2007, Rio de Janeiro, Brazil, 20 October 2007; Proceedings 4. Springer: Berlin/Heidelberg, Germany, 2007; pp. 29–38. [Google Scholar]
- Zhai, J.; Barreto, A.; Chin, C.; Li, C. User stress detection in human-computer interactions. Biomed. Sci. Instrum. 2005, 41, 277–286. [Google Scholar] [PubMed]
- Super Smash Bros. Ultimate for the Nintendo Switch System. 2018. Available online: https://www.smashbros.com/en_US/ (accessed on 3 January 2025).
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef] [PubMed]
- Fleetwood, M.D.; Byrne, M.D.; Centgraf, P.; Dudziak, K.; Lin, B.; Mogilev, D. An evaluation of text-entry in Palm OS–Graffiti and the virtual keyboard. In Human Factors and Ergonomics Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 2002; Volume 46, pp. 617–621. [Google Scholar]
- Sears, A.; Revis, D.; Swatski, J.; Crittenden, R.; Shneiderman, B. Investigating touchscreen typing: The effect of keyboard size on typing speed. Behav. Inf. Technol. 1993, 12, 17–22. [Google Scholar] [CrossRef]
- Miura, T.; Yabu, K.I.; Kobayashi, M.; Hiyama, A.; Hirose, M.; Ifukube, T. Learning Processes of Touchscreen Gesture Interaction in Older Adults and Children. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2023; pp. 125–139. [Google Scholar]
- Sutter, C.; Ziefle, M. Psychomotor performance of input device users and optimized cursor control. In Human Factors and Ergonomics Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 2006; Volume 50, pp. 742–746. [Google Scholar]
- MacKenzie, I.S.; Zhang, S.X.; Soukoreff, R.W. Text entry using soft keyboards. Behav. Inf. Technol. 1999, 18, 235–244. [Google Scholar] [CrossRef]
- William Soukoreff, R.; Scott Mackenzie, I. Theoretical upper and lower bounds on typing speed using a stylus and a soft keyboard. Behav. Inf. Technol. 1995, 14, 370–379. [Google Scholar] [CrossRef]
- Wood, E.; Willoughby, T.; Rushing, A.; Bechtel, L.; Gilbert, J. Use of computer input devices by older adults. J. Appl. Gerontol. 2005, 24, 419–438. [Google Scholar] [CrossRef]
- Baba, D.M. Determinants of video game performance. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1993; Volume 102, pp. 57–74. [Google Scholar]
- Lakens, D.; Caldwell, A.R. Simulation-based power analysis for factorial analysis of variance designs. Adv. Methods Pract. Psychol. Sci. 2021, 4, 2515245920951503. [Google Scholar] [CrossRef]
- Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. R Package Version 1.9.10. 2023. Available online: https://CRAN.R-project.org/package=PMCMRplus (accessed on 3 January 2025).
- Fukumori, H.; Matsushita, T.; Ichimiya, A.; Kajitani, K.; Kumagai, S.; Maruyama, T.; Irie, M.; Nagano, J.; Masaki, Y.; Yamamoto, N.; et al. Development of “The Check Catalogue for Quality of College Student Life 45” for measuring Quality of College Student Life. Jpn. J. Health Promot. 2015, 17, 31–39. [Google Scholar]
- Lin, S.; Hsiao, Y.Y.; Wang, M. Test review: The profile of mood states 2nd edition. J. Psychoeduc. Assess. 2014, 32, 273–277. [Google Scholar] [CrossRef]
- Arai, H.; Takenaka, K.; Oka, K. Affect scale for acute exercise: Scale development and examination of the exercise-induced affects. Jpn. J. Health Psychol. 2003, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yohai, V.J. High breakdown-point and high efficiency robust estimates for regression. Ann. Stat. 1987, 15, 642–656. [Google Scholar] [CrossRef]
- Koller, M.; Stahel, W.A. Sharpening Wald-type inference in robust regression for small samples. Comput. Stat. Data Anal. 2011, 55, 2504–2515. [Google Scholar] [CrossRef]
- Champely, S.; Ekstrom, C.; Dalgaard, P.; Gill, J.; Weibelzahl, S.; Anandkumar, A.; Ford, C.; Volcic, R.; De Rosario, H. pwr: Basic Functions For Power Analysis. 2017. Available online: https://cran.r-project.org/web/packages/pwr/ (accessed on 3 January 2025).
- Bulus, M. Pwrss: Statistical Power and Sample Size Calculation Tools. Available online: https://CRAN.R-project.org/package=pwrss (accessed on 3 January 2025).
- Sjöblom, M.; Macey, J.; Hamari, J. Digital athletics in analogue stadiums: Comparing gratifications for engagement between live attendance and online esports spectating. Internet Res. 2020, 30, 713–735. [Google Scholar] [CrossRef]
- Eyben, F.; Wöllmer, M.; Schuller, B. Opensmile: The munich versatile and fast open-source audio feature extractor. In Proceedings of the 18th ACM International Conference on Multimedia, Firenze, Italy, 25–29 October 2010; pp. 1459–1462. [Google Scholar]
- Eyben, F.; Weninger, F.; Gross, F.; Schuller, B. Recent developments in opensmile, the munich open-source multimedia feature extractor. In Proceedings of the 21st ACM International Conference on Multimedia, Barcelona, Spain, 21–25 October 2013; pp. 835–838. [Google Scholar]
- Goldberg, L.R. An alternative “description of personality”: The Big-Five factor structure. In Personality and Personality Disorders; Routledge: London, UK, 2013; pp. 34–47. [Google Scholar]
- Roccas, S.; Sagiv, L.; Schwartz, S.H.; Knafo, A. The big five personality factors and personal values. Personal. Soc. Psychol. Bull. 2002, 28, 789–801. [Google Scholar] [CrossRef]
- Gosling, S.D.; Rentfrow, P.J.; Swann, W.B., Jr. A very brief measure of the Big-Five personality domains. J. Res. Personal. 2003, 37, 504–528. [Google Scholar] [CrossRef]
Scale/Parameter | p | ||
---|---|---|---|
QOL (CC-QCSL-45) | −0.57 | 0.003 | ** |
TMD (POMS2) | −0.54 | 0.005 | ** |
Subjective concentration | −0.11 | 0.607 | |
WASEDA (negative affect) | 0.074 | 0.874 | |
WASEDA (positive engagement) | −0.073 | 0.560 | |
WASEDA (tranquility) | −0.072 | 0.659 | |
In-game score | −0.45 | 0.021 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiratsuka, Y.; Kuga, K.; Miura, T.; Tanaka, T.; Ueda, M. Sounds and Natures Do Often Agree: Prediction of Esports Players’ Performance in Fighting Games Based on the Operating Sounds of Game Controllers. Appl. Sci. 2025, 15, 719. https://doi.org/10.3390/app15020719
Hiratsuka Y, Kuga K, Miura T, Tanaka T, Ueda M. Sounds and Natures Do Often Agree: Prediction of Esports Players’ Performance in Fighting Games Based on the Operating Sounds of Game Controllers. Applied Sciences. 2025; 15(2):719. https://doi.org/10.3390/app15020719
Chicago/Turabian StyleHiratsuka, Yamato, Kazuki Kuga, Takahiro Miura, Tetsuo Tanaka, and Mari Ueda. 2025. "Sounds and Natures Do Often Agree: Prediction of Esports Players’ Performance in Fighting Games Based on the Operating Sounds of Game Controllers" Applied Sciences 15, no. 2: 719. https://doi.org/10.3390/app15020719
APA StyleHiratsuka, Y., Kuga, K., Miura, T., Tanaka, T., & Ueda, M. (2025). Sounds and Natures Do Often Agree: Prediction of Esports Players’ Performance in Fighting Games Based on the Operating Sounds of Game Controllers. Applied Sciences, 15(2), 719. https://doi.org/10.3390/app15020719