Phase Transition and Controlled Zirconia Implant Patterning Using Laser-Induced Shockwaves
<p>XRD pattern of zirconia. Sintered (red), pre-sintered (green), and green body (blue) ZrO<sub>2</sub> XRD profiles.</p> "> Figure 2
<p>ZrO<sub>2</sub> patterned via the “graphite method”. Cu (400) mesh TEM grid template at F = 1 J/cm<sup>2</sup>, t = 2 s.</p> "> Figure 3
<p>Zirconia surface patterned via the “aluminum method”. First row: Cu (400) square mesh TEM template at F = 2 J/cm<sup>2</sup>, t = 1 s. Second row: Cu (400) hexagonal mesh grid TEM template at F = 2 J/cm<sup>2</sup>, t = 1 s.</p> "> Figure 4
<p>AFM image, 3D image, and depth profile plot of a patterned zirconia via the aluminum method. Cu(400) hexagonal mesh grid TEM template at F = 2 J/cm<sup>2</sup>, t = ₋1 s. −.</p> "> Figure 5
<p>BSA absorbance as a function of time at 562 nm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Zirconia Sample
2.2. Laser-Induced Plasma
2.3. Laser Shockwave Imprinting
3. Results
3.1. Phase Transitions in Zirconia
3.2. Laser Pattern Imprinting on Zirconia
3.3. Bioanalysis via Protein Adsorption
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Research, A.M. Medical Implant Market to Reach $225.7 Billion by 2033|Conmed Corporation, Globus Medical, Inc., Institut St. 2024. Available online: https://www.openpr.com/news/3714920/medical-implant-market-to-reach-225-7-billion-by-2033-conmed (accessed on 12 November 2024).
- Dental Implants Market Size, Share and Growth Report 2030. Available online: https://www.grandviewresearch.com/industry-analysis/dental-implants-market (accessed on 13 November 2024).
- Elias, C.N.; Meirelles, L. Improving Osseointegration of Dental Implants. Expert. Rev. Med. Devices 2010, 7, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001, 10, S96–S101. [Google Scholar] [CrossRef] [PubMed]
- Parithimarkalaignan, S.; Padmanabhan, T.V. Osseointegration: An Update. J. Indian Prosthodont. Soc. 2013, 13, 2–6. [Google Scholar] [CrossRef]
- Takadoum, J. Review on Corrosion, Tribocorrosion and Osseointegration of Titanium Alloys as Biomaterials. Corros. Mater. Degrad. 2023, 4, 644–658. [Google Scholar] [CrossRef]
- Sun, X.-D.; Liu, T.-T.; Wang, Q.-Q.; Zhang, J.; Cao, M.-S. Surface Modification and Functionalities for Titanium Dental Implants. ACS Biomater. Sci. Eng. 2023, 9, 4442–4461. [Google Scholar] [CrossRef]
- Zhang, Z.; Dandu, R.S.B.; Klu, E.E.; Cai, W. A Review on Tribocorrosion Behavior of Aluminum Alloys: From Fundamental Mechanisms to Alloy Design Strategies. Corros. Mater. Degrad. 2023, 4, 594–622. [Google Scholar] [CrossRef]
- Kitagawa, M.; Murakami, S.; Akashi, Y.; Oka, H.; Shintani, T.; Ogawa, I.; Inoue, T.; Kurihara, H. Current status of dental metal allergy in Japan. J. Prosthodont. Res. 2019, 63, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Chrcanovic, B.; Mölne, J.; Wennerberg, A. Foreign body reactions marginal bone loss allergies in relation to titanium implants. Eur. J. Oral. Implantol. 2018, 11 (Suppl. 1), S37–S46. [Google Scholar] [PubMed]
- Comino-Garayoa, R.; Cortés-Bretón Brinkmann, J.; Peláez, J.; López-Suárez, C.; Martínez-González, J.M.; Suárez, M.J. Allergies to Titanium Dental Implants: What Do We Really Know about Them? A Scoping Review. Biology 2020, 9, 404. [Google Scholar] [CrossRef]
- Özkurt, Z.; Kazazoğlu, E. Zirconia Dental Implants: A Literature Review. J. Oral Implant. 2011, 37, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Osman, R.; Swain, M. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef]
- Apratim, A.; Eachempati, P.; Krishnappa Salian, K.; Singh, V.; Chhabra, S.; Shah, S. Zirconia in Dental Implantology: A Review. J. Int. Soc. Prev. Community Dent. 2015, 5, 147. [Google Scholar] [CrossRef]
- Thu, M.K.; Kang, Y.S.; Kwak, J.M.; Jo, Y.-H.; Han, J.-S.; Yeo, I.-S.L. Comparison between bone–implant interfaces of microtopographically modified zirconia and titanium implants. Sci. Rep. 2023, 13, 11142. [Google Scholar] [CrossRef] [PubMed]
- Zarzar, A.A. Immunologically Neutral Dental Implants Ceramic (Zirconia) Implants. J. Dent. Oral. Sci. 2022, 4, 1–22. [Google Scholar] [CrossRef]
- Monti, L.; Franchi, M.; Ursino, N.; Mariani, I.; Corona, K.; Anghilieri, F.M.; D’Ambrosi, R. Hypoallergenic Unicompartmental Knee Arthroplasty and Return to Sport: Comparison between Oxidized Zirconium and Titanium Niobium Nitride. Acta Biomed. Atenei Parm. 2022, 93, 2022160. [Google Scholar] [CrossRef]
- Bollen, C.; Hakobayan, G.; Jörgens, M. One-piece versus two-piece ceramic dental implants. Br. Dent. J. 2024, 236, 383–387. [Google Scholar] [CrossRef]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of Titanium, Titanium Alloy and Zirconia Dental Implants: Current Knowledge and Open Questions. Periodontology 2000, 73, 22–40. [Google Scholar] [CrossRef]
- Depprich, R.; Zipprich, H.; Ommerborn, M.; Naujoks, C.; Wiesmann, H.-P.; Kiattavorncharoen, S.; Lauer, H.-C.; Meyer, U.; Kübler, N.R.; Handschel, J. Osseointegration of Zirconia Implants Compared with Titanium: An in Vivo Study. Head. Face Med. 2008, 4, 30. [Google Scholar] [CrossRef]
- Hanawa, T. Zirconia versus Titanium in Dentistry: A Review. Dent. Mater. J. 2020, 39, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Stich, T.; Alagboso, F.; Křenek, T.; Kovářík, T.; Alt, V.; Docheva, D. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng. Transl. Med. 2021, 7, e10239. [Google Scholar] [CrossRef] [PubMed]
- Pae, A.; Lee, H.; Noh, K.; Woo, Y.-H. Cell attachment proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment. J. Adv. Prosthodont. 2014, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, M.; Spörer, M.; Deppe, H.; Ritschl, L.M.; Mela, P. Bacterial reduction and temperature increase of titanium dental implant models treated with a 445 nm diode laser: An in vitro study. Sci. Rep. 2024, 14, 18053. [Google Scholar] [CrossRef]
- Shayeb, M.A.; Elfadil, S.; Abutayyem, H.; Shqaidef, A.; Marrapodi, M.M.; Cicciù, M.; Minervini, G. Bioactive surface modifications on dental implants: A systematic review and meta-analysis of osseointegration and longevity. Clin. Oral Investig. 2024, 28, 592. [Google Scholar] [CrossRef] [PubMed]
- Chakravorty, N.; Jaiprakash, A.; Ivanovski, S.; Xiao, Y. Implant Surface Modifications and Osseointegration. In Biomaterials for Implants and Scaffolds; Li, Q., Mai, Y.-W., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 107–131. [Google Scholar]
- Pellegrini, G.; Francetti, L.; Barbaro, B.; Del Fabbro, M. Novel Surfaces and Osseointegration in Implant Dentistry. J. Investig. Clin. Dent. 2018, 9, 12349. [Google Scholar] [CrossRef] [PubMed]
- Daskalova, A.; Ostrowska, B.; Zhelyazkova, A.; Święszkowski, W.; Trifonov, A.; Declercq, H.; Nathala, C.; Szlazak, K.; Lojkowski, M.; Husinsky, W.; et al. Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications. Appl. Phys. A. 2018, 124, 413. [Google Scholar] [CrossRef]
- Hao, L.; Lawrence, J.; Chian, K.S. Osteoblast Cell Adhesion on a Laser Modified Zirconia Based Bioceramic. J. Mater. Sci. Mater. Med. 2005, 16, 719–726. [Google Scholar] [CrossRef]
- Metallographic Specimen Preparation for Zirconia Ceramics. Available online: https://www.metallographic.com/Metallographic-Preparation-Procedures/Zirconia-ceramic (accessed on 13 November 2024).
- Creasey, D.; Akkus, O. 1064-nm Raman: The right choice for biological samples? Spectroscopy 2017, 32, 46–54. [Google Scholar]
- Zirconia Dentures-Beautyzir 3DPro Multilayer 98mm-Full Crown Bridges—Beautyzir Dental. Available online: https://www.beautyzir.com/products/3dpro-multilayer-98mm (accessed on 13 November 2024).
- Jin, S. Laser Shock Imprinting of Metallic Membranes Toward Soft Templates and Its Applications. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2019; pp. 1–106. [Google Scholar]
- Duchateau, G.; Hu, S.X.; Pineau, A.; Kar, A.; Chimier, B.; Casner, A.; Tikhonchuk, V.; Goncharov, V.N.; Radha, P.B.; Campbell, E.M. Modeling the solid-to-plasma transition for laser imprinting in direct-drive inertial confinement fusion. Phys. Rev. E 2019, 100, 033201. [Google Scholar] [CrossRef]
- Liu, T.; Gao, X.; Hao, Z.; Liu, Z.; Lin, J. Characteristics of plasma plume expansion from Al target induced by oblique incidence of 1064 and 355 nm nanosecond Nd: YAG laser. J. Phys. Appl. Phys. 2013, 46, 485207. [Google Scholar] [CrossRef]
- Colvin, J.; Larsen, J. Extreme Physics: Properties and Behavior of Matter at Extreme Conditions; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ilhom, S.; Kholikov, K.; Li, P.; Ottman, C.; Sanford, D.; Thomas, Z. Scalable patterning using laser-induced shock waves. Opt. Eng. 2018, 57, 041413. [Google Scholar] [CrossRef]
- Majidov, I.; Allamyradov, Y.; Kylychbekov, S.; Khuzhakulov, Z. Surface patterning on zirconia dental implants by laser imprinting. In Laser-Based Micro- and Nanoprocessing XVIII; Kling, R., Pfleging, W., Sugioka, K., Eds.; SPIE: San Francisco, CA, USA, 2024; p. 56. [Google Scholar]
- Wang, L.; Su, C.; Jia, X.; Guo, Z.; Zou, Z. Experiment and Simulation Study of the Laser-Induced Cavitation Bubble Technique for Forming a Microgroove in Aluminum Foil. Micromachines 2023, 14, 2106. [Google Scholar] [CrossRef] [PubMed]
- Pustovalov, V.K. Heating of nanoparticles and their environment by laser radiation and applications. Nanotechnol. Precis. Eng. 2024, 7, 015001. [Google Scholar] [CrossRef]
- Yang, R.; Hu, Y. Plastic deformation mechanisms and their threshold pressures of Ti6Al4V thin-walled structures induced by laser peen forming. Opt. Laser Technol. 2023, 167, 109722. [Google Scholar] [CrossRef]
- Peyre, P.; Berthe, L.; Scherpereel, X.; Fabbro, R.; Bartnicki, E. Experimental study of laser-driven shock waves in stainless steels. J. Appl. Phys. 1998, 84, 5985–5992. [Google Scholar] [CrossRef]
- Cutler, R.A.; Reynolds, J.R.; Jones, A. Sintering and Characterization of Polycrystalline Monoclinic, Tetragonal, and Cubic Zirconia. J. Am. Ceram. Soc. 1992, 75, 2173–2183. [Google Scholar] [CrossRef]
- Mulko, L.; Soldera, M.; Lasagni, A.F. Structuring and functionalization of non-metallic materials using direct laser interference patterning: A review. Nanophotonics 2022, 11, 203–240. [Google Scholar] [CrossRef] [PubMed]
- Khuzhakulov, Z.; Kylychbekov, S.; Allamyradov, Y.; Majidov, I.; Ben Yosef, J.; Er, A.Y.; Kitchens, C.; Banga, S.; Badarudeen, S.; Er, A.O. Formation of picosecond laser-induced periodic surface structures on steel for knee arthroplasty prosthetics. Front. Met. Alloys 2023, 1, 1090104. [Google Scholar] [CrossRef]
- Jin, H.W.; Noumbissi, S.; Wiedemann, T.G. Comparison of Zirconia Implant Surface Modifications for Optimal Osseointegration. J. Funct. Biomater. 2024, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fu, W.; Wang, X.; Ye, J. Improving the osseointegration soft tissue sealing of zirconia ceramics by the incorporation of akermanite via sol infiltration for dental implants. J. Mater. Chem. B 2023, 11, 4237–4259. [Google Scholar] [CrossRef] [PubMed]
- Putman, B.; Van Der Meeren, P.; Thierens, D. Reduced bovine serum albumin adsorption by prephosphatation of powdered zirconium oxide. Colloids Surf. Physicochem. Eng. Asp. 1997, 121, 81–88. [Google Scholar] [CrossRef]
- Fathi, A.; Asgari, E.; Danafar, H.; Salehabadi, H.; Fazli, M.M. A comprehensive study on methylene blue removal via polymer and protein nanoparticle adsorbents. Sci. Rep. 2024, 14, 29434. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Hong, G. Surface Modifications for Zirconia Dental Implants: A Review. Front. Dent. Med. 2021, 2, 733242. [Google Scholar] [CrossRef]
- Lin, H.; Yin, C.; Mo, A. Zirconia Based Dental Biomaterials: Structure, Mechanical Properties, Biocompatibility, Surface Modification, and Applications as Implant. Front. Dent. Med. 2021, 2, 689198. [Google Scholar] [CrossRef]
- Cunha, W.; Carvalho, O.; Henriques, B.; Silva, F.S.; Özcan, M.; Souza, J.C.M. Surface modification of zirconia dental implants by laser texturing. Lasers Med. Sci. 2022, 37, 77–93. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, M.B.; Marques, J.F.; Marques, A.F.S.; Madeira, S.; Carvalho, Ó.; Silva, F.; Caramês, J.; da Mata, A.D.S.P. Modification of Zirconia Implant Surfaces by Nd:YAG Laser Grooves: Does It Change Cell Behavior? Biomimetics 2022, 7, 49. [Google Scholar] [CrossRef]
Step | Temperature (°C) | Heating Rate (°C/Min) | Time (Min) | Process Description |
---|---|---|---|---|
STEP 1 (PRE-SINTERING) | 20 → 900 | 10 | 88 | Heat from room temperature to 900 °C at 10 °C/min |
STEP 2 (PRE-SINTERING) | 900 | - | 20 | Hold at 900 °C for 20 min |
STEP 3 (PRE-SINTERING) | 900 → 1200 | 10 | 30 | Heat from 900 °C to 1200 °C at 10 °C/min |
STEP 4 (PRE-SINTERING) | 1200 | - | 120 | Hold at 1200 °C for 120 min to allow densification |
STEP 5 (COOLING) | 1200 → 300 | 10 | 90 | Cool from 1200 °C to 300 °C at 10 °C/min |
STEP 6 (COOLING) | 300 → RT | - | Natural | Cool naturally from 300 °C to room temperature (RT) |
STEP 7 (SINTERING) | 20 → 900 | 10 | 88 | Heat from room temperature to 900 °C at 10 °C/min |
STEP 8 (SINTERING) | 900 | - | 20 | Hold at 900 °C for 20 min |
STEP 9 (SINTERING) | 900 → 1450 | 10 | 55 | Heat from 900 °C to 1450 °C at 10 °C/min |
STEP 10 (SINTERING) | 1450 | - | 120 | Hold at 1450 °C for 120 min to allow sintering |
STEP 11 (COOLING) | 1450 → 300 | 10 | 115 | Cool from 1450 °C to 300 °C at 10 °C/min |
STEP 12 (COOLING) | 300 → RT | - | Natural | Cool naturally from 300 °C to room temperature (RT) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majidov, I.; Allamyradov, Y.; Kylychbekov, S.; Khuzhakulov, Z.; Er, A.O. Phase Transition and Controlled Zirconia Implant Patterning Using Laser-Induced Shockwaves. Appl. Sci. 2025, 15, 362. https://doi.org/10.3390/app15010362
Majidov I, Allamyradov Y, Kylychbekov S, Khuzhakulov Z, Er AO. Phase Transition and Controlled Zirconia Implant Patterning Using Laser-Induced Shockwaves. Applied Sciences. 2025; 15(1):362. https://doi.org/10.3390/app15010362
Chicago/Turabian StyleMajidov, Inomjon, Yaran Allamyradov, Salizhan Kylychbekov, Zikrulloh Khuzhakulov, and Ali Oguz Er. 2025. "Phase Transition and Controlled Zirconia Implant Patterning Using Laser-Induced Shockwaves" Applied Sciences 15, no. 1: 362. https://doi.org/10.3390/app15010362
APA StyleMajidov, I., Allamyradov, Y., Kylychbekov, S., Khuzhakulov, Z., & Er, A. O. (2025). Phase Transition and Controlled Zirconia Implant Patterning Using Laser-Induced Shockwaves. Applied Sciences, 15(1), 362. https://doi.org/10.3390/app15010362