sRrsR-Net: A New Low-Light Image Enhancement Network via Raw Image Reconstruction
<p>Experimental results on four datasets. This is a comprehensive comparison chart of results in both sRGB and raw domains, with detailed data available in <a href="#sec4-applsci-15-00361" class="html-sec">Section 4</a>. The horizontal and vertical axes of the chart represent PSNR and SSIM, respectively. The better the performance, the further right and up the model is on the chart. It can be seen that our model achieves excellent performance.</p> "> Figure 2
<p>Flowchart of sRrsR-Net integrating Sampler, RGB-iRGB, RAWFormer, and RRAW-sRGB modules.</p> "> Figure 3
<p>The structure of the RGB-iRGB module.</p> "> Figure 4
<p>The structure of the RAWFormer module.</p> "> Figure 5
<p>The structure of the RRAW-sRGB module.</p> "> Figure 6
<p>Visual comparison results on the LOL-v1 and LOL-v2 datasets. The magnified portion has already been marked with a red box. The following are the same.</p> "> Figure 7
<p>Visual comparison of raw domain image reconstruction results using sRrsR-Net and six other methods.</p> "> Figure 8
<p>sRrsR-Net’s visualization results on the VE-LOL test set. From top to bottom, the images represent real and synthetic scenarios. From left to right, the input, output, and ground-truth images are depicted.</p> "> Figure 9
<p>Comparison of running times across different datasets. The left side compares the average running times of other methods, while the right side shows our method’s running time compared to other state-of-the-art methods.</p> "> Figure 10
<p>Visualization results of ablation study.</p> ">
Abstract
:1. Introduction
- We propose a novel LIE framework, sRrsR-Net, integrating feature information of both sRGB and raw domains; in our network, by using a translation process of sRGB–raw–sRGB, the training data in the raw domain are avoided;
- In the translation process of sRGB–raw–sRGB, three simple and efficient modules are proposed; they are RGB-iRGB, RAWFormer, and RRAW-sRGB, respectively;
- Quantitative and qualitative experiments demonstrate that our model sRrsR-Net outperforms existing state-of-the-art methods in both raw and sRGB image domains.
2. Related Work
2.1. Low-Light Image Enhancement
2.2. Raw Image Reconstruction with Metadata
2.3. Image Signal Processing with Learning
3. Methods
3.1. Overall Architecture
3.2. Metadata Sampler and RGB-iRGB Modules
3.3. RAWFormer Module
3.4. RRAW-sRGB Module
3.5. Loss Function
4. Experiments
4.1. Datasets, Metrics, and Implementation Details
4.2. Comparison Analysis on the sRGB Domain Datasets
4.3. Comparison Analysis on the Raw Domain Datasets
4.4. Generalization Performance Evaluation
4.5. Computational Performance
4.6. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Z.; Li, K.; Gu, L.; Su, S.; Gao, P.; Jiang, Z.; Qiao, Y.; Harada, T. You Only Need 90K Parameters to Adapt Light: A Light Weight Transformer for Image Enhancement and Exposure Correction. arXiv 2022. [Google Scholar] [CrossRef]
- Tran, D.Q.; Aboah, A.; Jeon, Y.; Shoman, M.; Park, M.; Park, S. Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 7056–7065. [Google Scholar]
- Zhu, A.; Zhang, L.; Shen, Y.; Ma, Y.; Zhao, S.; Zhou, Y. Zero-Shot Restoration of Underexposed Images via Robust Retinex Decomposition. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Xu, X.; Wang, R.; Fu, C.-W.; Jia, J. SNR-Aware Low-Light Image Enhancement. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17693–17703. [Google Scholar]
- Jiang, Y.; Chang, S.; Wang, Z. TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up. arXiv 2021. [Google Scholar] [CrossRef]
- Marnissi, M.A.; Fathallah, A. GAN-Based Vision Transformer for High-Quality Thermal Image Enhancement. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 17–24 June 2023; pp. 817–825. [Google Scholar]
- Zhou, D.; Yang, Z.; Yang, Y. Pyramid Diffusion Models For Low-Light Image Enhancement. arXiv 2023, arXiv:2305.10028v1. [Google Scholar]
- Fei, B.; Lyu, Z.; Pan, L.; Zhang, J.; Yang, W.; Luo, T.; Zhang, B.; Dai, B. Generative Diffusion Prior for Unified Image Restoration and Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 9935–9946. [Google Scholar]
- Cai, Y.; Bian, H.; Lin, J.; Wang, H.; Timofte, R.; Zhang, Y. Retinexformer: One-Stage Retinex-Based Transformer for Low-Light Image Enhancement. arXiv 2023. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Liu, M.; Wang, R.; Zhang, J.; Zuo, W. Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 4328–4338. [Google Scholar]
- Wang, Y.; Yu, Y.; Yang, W.; Guo, L.; Chau, L.-P.; Kot, A.; Wen, B. Raw Image Reconstruction with Learned Compact Metadata. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Xu, S.; Song, B.; Chen, X.; Liu, X.; Zhou, J. Image Demoireing in RAW and sRGB Domains. arXiv 2024. [Google Scholar] [CrossRef]
- Conde, M.V.; Vasluianu, F.; Timofte, R. BSRAW: Improving Blind RAW Image Super-Resolution. In Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2024; pp. 8500–8510. [Google Scholar]
- Wei, K.; Fu, Y.; Yang, J.; Huang, H. A Physics-Based Noise Formation Model for Extreme Low-Light Raw Denoising. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 9–13 June 2020; pp. 2758–2767. [Google Scholar]
- Rahman, S.; Rahman, M.M.; Abdullah-Al-Wadud, M.; Al-Quaderi, G.D.; Shoyaib, M. An Adaptive Gamma Correction for Image Enhancement. J. Image Video Proc. 2016, 2016, 35. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1780–1789. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.-H.; Shao, L. Learning Enriched Features for Real Image Restoration and Enhancement. In Computer Vision–ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12370, pp. 492–511. ISBN 978-3-030-58594-5. [Google Scholar]
- Wang, R.; Zhang, Q.; Fu, C.-W.; Shen, X.; Zheng, W.-S.; Jia, J. Underexposed Photo Enhancement Using Deep Illumination Estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 6842–6850. [Google Scholar]
- Li, J.; Li, B.; Tu, Z.; Liu, X.; Guo, Q.; Juefei-Xu, F.; Xu, R.; Yu, H. Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 15205–15215. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.-H. Restormer: Efficient Transformer for High-Resolution Image Restoration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5728–5739. [Google Scholar]
- Zhang, Z.; Jiang, Y.; Jiang, J.; Wang, X.; Luo, P.; Gu, J. STAR: A Structure-Aware Lightweight Transformer for Real-Time Image Enhancement. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 4106–4115. [Google Scholar]
- Huang, H.; Yang, W.; Hu, Y.; Liu, J.; Duan, L.-Y. Towards Low Light Enhancement With RAW Images. IEEE Trans. Image Process. 2022, 31, 1391–1405. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, Q.; Xu, J.; Koltun, V. Learning to See in the Dark. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3291–3300. [Google Scholar]
- Afifi, M.; Punnappurath, A.; Finlayson, G.; Brown, M.S. As-Projective-as-Possible Bias Correction for Illumination Estimation Algorithms. J. Opt. Soc. Am. A 2019, 36, 71. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; Punnappurath, A.; Brubaker, M.A.; Brown, M.S. Learning sRGB-to-Raw-RGB De-Rendering with Content-Aware Metadata. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17683–17692. [Google Scholar]
- Debevec, P.E.; Malik, J. Recovering High Dynamic Range Radiance Maps from Photographs. In Proceedings of the ACM SIGGRAPH 2008 Classes, Los Angeles, CA, USA, 11 August 2008; pp. 1–10. [Google Scholar]
- Xing, Y.; Qian, Z.; Chen, Q. Invertible Image Signal Processing. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6283–6292. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.-H.; Shao, L. CycleISP: Real Image Restoration via Improved Data Synthesis. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–9 June 2020; pp. 2693–2702. [Google Scholar]
- Boureau, Y.-L.; Ponce, J.; Lecun, Y. A Theoretical Analysis of Feature Pooling in Visual Recognition. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 111–118. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. arXiv 2017. [Google Scholar] [CrossRef]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Li, K.; Wang, Y.; Zhang, J.; Gao, P.; Song, G.; Liu, Y.; Li, H.; Qiao, Y. UniFormer: Unifying Convolution and Self-Attention for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12581–12600. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015. [Google Scholar] [CrossRef]
- Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep Retinex Decomposition for Low-Light Enhancement. arXiv 2018. [Google Scholar] [CrossRef]
- Yang, W.; Wang, W.; Huang, H.; Wang, S.; Liu, J. Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement. IEEE Trans. Image Process. 2021, 30, 2072–2086. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, D.; Yang, W.; Fan, M.; Huang, H. Benchmarking Low-Light Image Enhancement and Beyond. Int. J. Comput. Vis. 2021, 129, 1153–1184. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 586–595. [Google Scholar]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. EnlightenGAN: Deep Light Enhancement Without Paired Supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cun, X.; Bao, J.; Zhou, W.; Liu, J.; Li, H. Uformer: A General U-Shaped Transformer for Image Restoration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–4 June 2022; pp. 17683–17693. [Google Scholar]
- Liu, Y.; Huang, T.; Dong, W.; Wu, F.; Li, X.; Shi, G. Low-Light Image Enhancement with Multi-Stage Residue Quantization and Brightness-Aware Attention. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023. [Google Scholar]
- Gu, S.; Li, Y.; Van Gool, L.; Timofte, R. Self-Guided Network for Fast Image Denoising. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2511–2520. [Google Scholar]
- Dong, X.; Xu, W.; Miao, Z.; Ma, L.; Zhang, C.; Yang, J.; Jin, Z.; Teoh, A.B.J.; Shen, J. Abandoning the Bayer-Filter to See in the Dark. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17410–17419. [Google Scholar]
- Zhu, M.; Pan, P.; Chen, W.; Yang, Y. EEMEFN: Low-Light Image Enhancement via Edge-Enhanced Multi-Exposure Fusion Network. AAAI 2020, 34, 13106–13113. [Google Scholar] [CrossRef]
- Maharjan, P.; Li, L.; Li, Z.; Xu, N.; Ma, C.; Li, Y. Improving Extreme Low-Light Image Denoising via Residual Learning. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 916–921. [Google Scholar]
- Xu, K.; Yang, X.; Yin, B.; Lau, R.W.H. Learning to Restore Low-Light Images via Decomposition-and-Enhancement. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2278–2287. [Google Scholar]
- Lamba, M.; Mitra, K. Restoring Extremely Dark Images in Real Time. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 3486–3496. [Google Scholar]
- Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A Deep Autoencoder Approach to Natural Low-Light Image Enhancement. Pattern Recognition 2017, 61, 650–662. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Guo, X. Kindling the Darkness: A Practical Low-Light Image Enhancer. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 15 October 2019; pp. 1632–1640. [Google Scholar]
- Zhang, Y.; Guo, X.; Ma, J.; Liu, W.; Zhang, J. Beyond Brightening Low-Light Images. Int. J. Comput. Vis. 2021, 129, 1013–1037. [Google Scholar] [CrossRef]
- Liu, R.; Ma, L.; Zhang, J.; Fan, X.; Luo, Z. Retinex-Inspired Unrolling with Cooperative Prior Architecture Search for Low-Light Image Enhancement. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 10556–10565. [Google Scholar]
- Wang, Y.; Wan, R.; Yang, W.; Li, H.; Chau, L.-P.; Kot, A.C. Low-Light Image Enhancement with Normalizing Flow. arXiv 2021. [Google Scholar] [CrossRef]
- Zhou, S.; Li, C.; Change Loy, C. LEDNet: Joint Low-Light Enhancement and Deblurring in the Dark. In Proceedings of the Computer Vision–ECCV 2022; Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 573–589. [Google Scholar]
Methods | LOL-v1 | LOL-v2-Real | LOL-v2-Synthetic | |||
---|---|---|---|---|---|---|
PSNR ↑ | SSIM ↑ | PSNR ↑ | SSIM ↑ | PSNR ↑ | SSIM ↑ | |
Zero-DCE [16] | 14.86 | 0.562 | 18.06 | 0.580 | 17.84 | 0.730 |
DeepUPE [18] | 14.38 | 0.446 | 13.27 | 0.452 | 15.08 | 0.623 |
EnGAN [40] | 17.48 | 0.650 | 18.23 | 0.617 | 16.57 | 0.734 |
UFormer [41] | 16.36 | 0.771 | 18.82 | 0.771 | 19.66 | 0.871 |
MIRNet [17] | 24.14 | 0.830 | 20.02 | 0.820 | 21.94 | 0.876 |
Sparse [36] | 17.20 | 0.640 | 20.06 | 0.816 | 22.05 | 0.905 |
Retinexformer [9] | 25.16 | 0.845 | 22.80 | 0.840 | 25.67 | 0.930 |
RQ [42] | 25.24 | 0.855 | 22.37 | 0.854 | 25.94 | 0.941 |
SNR [4] | 26.72 | 0.851 | 27.21 | 0.871 | 27.79 | 0.928 |
Ours | 29.49 | 0.861 | 29.48 | 0.889 | 29.92 | 0.933 |
Methods | PSNR ↑ | SSIM ↑ | Methods | PSNR ↑ | SSIM ↑ |
---|---|---|---|---|---|
DeepUPE [18] | 29.13 | 0.792 | SGN [43] | 28.91 | 0.789 |
SID [23] | 28.88 | 0.787 | ABF [44] | 29.65 | 0.797 |
EEMEFN [45] | 29.60 | 0.795 | DID [46] | 28.41 | 0.780 |
Zero-DCE [16] | 26.53 | 0.730 | EDSR [46] | 28.41 | 0.780 |
FIDE [47] | 29.56 | 0.799 | RED [48] | 28.66 | 0.790 |
SNR [4] | 29.75 | 0.812 | Ours | 29.98 | 0.831 |
Methods | LOL-v1 | VE-LOL | ||||
---|---|---|---|---|---|---|
PSNR ↑ | SSIM ↑ | LPIPS ↓ | PSNR ↑ | SSIM ↑ | LPIPS ↓ | |
LLNet [49] | 17.96 | 0.713 | 0.360 | 17.57 | 0.739 | 0.402 |
RRDNet [3] | 11.33 | 0.534 | 0.365 | 14.31 | 0.620 | 0.283 |
RetinexNet [35] | 16.77 | 0.559 | 0.474 | 14.68 | 0.525 | 0.642 |
Zero-DCE [16] | 14.86 | 0.589 | 0.335 | 21.12 | 0.771 | 0.248 |
EnlightenGAN [40] | 17.48 | 0.677 | 0.322 | 20.43 | 0.792 | 0.242 |
KinD [50] | 20.87 | 0.802 | 0.170 | 18.42 | 0.766 | 0.288 |
KinD++ [51] | 21.30 | 0.823 | 0.160 | 17.63 | 0.799 | 0.226 |
RUAS [52] | 18.23 | 0.717 | 0.354 | 14.36 | 0.671 | 0.337 |
LLFlow [53] | 25.19 | 0.872 | 0.113 | 23.85 | 0.888 | 0.146 |
SNR [4] | 24.61 | 0.842 | 0.151 | 23.52 | 0.874 | 0.216 |
Ours | 29.49 | 0.861 | 0.104 | 29.05 | 0.884 | 0.119 |
Type | Methods | FLOPs (G) | LOL-v1 | LOL-v2-Real | LOL-v2-Synthetic | SID |
---|---|---|---|---|---|---|
Transformer | Restormer [20] | 144.25 | 0.20 | 0.25 | 0.30 | 0.28 |
Retinexformer [9] | 11.33 | 0.11 | 0.15 | 0.20 | 0.18 | |
UFormer [41] | 15.85 | 0.15 | 0.20 | 0.25 | 0.22 | |
CNN | RetinexNet [35] | 587.46 | 0.28 | 0.30 | 0.30 | 0.30 |
KinD [50] | 35.01 | 0.26 | 0.28 | 0.27 | 0.26 | |
U-Net-like | LEDNet [54] | 35.90 | 0.19 | 0.22 | 0.23 | 0.21 |
Zero-DCE [16] | 4.81 | 0.12 | 0.12 | 0.13 | 0.12 | |
EnlightenGAN [40] | 526.23 | 0.25 | 0.26 | 0.27 | 0.25 | |
Mixed | Average | 170.11 | 0.19 | 0.22 | 0.25 | 0.23 |
Ours | 40.95 | 0.18 | 0.21 | 0.24 | 0.22 |
Modules | RGB-iRGB | RAWFormer | RRAW-sRGB | LOL-v1 | ||
---|---|---|---|---|---|---|
PSNR ↑ | SSIM ↑ | LPIPS ↓ | ||||
Baseline | 20.53 | 0.785 | 0.234 | |||
A | ✓ | 26.44 | 0.833 | 0.188 | ||
B | ✓ | 25.84 | 0.825 | 0.186 | ||
C | ✓ | 26.98 | 0.851 | 0.139 | ||
D | ✓ | ✓ | 28.60 | 0.859 | 0.112 | |
E | ✓ | ✓ | 28.52 | 0.842 | 0.136 | |
F | ✓ | ✓ | ✓ | 29.49 | 0.861 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Z.; Zhen, D.; Xiong, L.; Li, X.; Lin, Y. sRrsR-Net: A New Low-Light Image Enhancement Network via Raw Image Reconstruction. Appl. Sci. 2025, 15, 361. https://doi.org/10.3390/app15010361
Hong Z, Zhen D, Xiong L, Li X, Lin Y. sRrsR-Net: A New Low-Light Image Enhancement Network via Raw Image Reconstruction. Applied Sciences. 2025; 15(1):361. https://doi.org/10.3390/app15010361
Chicago/Turabian StyleHong, Zhiyong, Dexin Zhen, Liping Xiong, Xuechen Li, and Yuhan Lin. 2025. "sRrsR-Net: A New Low-Light Image Enhancement Network via Raw Image Reconstruction" Applied Sciences 15, no. 1: 361. https://doi.org/10.3390/app15010361
APA StyleHong, Z., Zhen, D., Xiong, L., Li, X., & Lin, Y. (2025). sRrsR-Net: A New Low-Light Image Enhancement Network via Raw Image Reconstruction. Applied Sciences, 15(1), 361. https://doi.org/10.3390/app15010361