The Association Between Sand Body Distribution and Fault of Zhuhai Formation on the North Slope of Baiyun Sag, Pearl River Mouth Basin, China
<p>The structural position of the study area and the comprehensive column chart [<a href="#B37-applsci-15-00412" class="html-bibr">37</a>] ((<b>a</b>) geographical location map of the study area, (<b>b</b>) composite bar chart).</p> "> Figure 2
<p>Composite histogram of well BY-A.</p> "> Figure 3
<p>Distribution of faults of the Zhuhai Formation on the north slope of Baiyun Sag.</p> "> Figure 4
<p>Seismic section and sedimentary morphology of contemporaneous faults.</p> ">
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
4. Discussion
4.1. Fault Types and Distribution
4.2. The Correlation Between Sand Body Distribution and Fault
4.2.1. Graben-Type Correlation Between Sand Body Distribution and Fault
4.2.2. Syntropy-Type Correlation Between Sand Body Distribution and Fault
4.2.3. Transition-Zone Type of Correlation Between Sand Body Distribution and Fault
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Wang, Q.; Miao, S.; Li, Y.; Yang, H.; Chen, Y.; Shen, H.; Zhao, Z. The Duality Distribution Pattern of Marine-Continental Transitional Hydrocarbon Source Rocks:A Case Study from Baiyun Sag in Pearl River Mouth Basin, China Offshore, Zhujiang Estuary Basin, China offshore. Natural Gas Geoscience. 2014, 25, 1299–1308. [Google Scholar]
- Xu, C.; Yuan, F.; Lai, L.; He, Y.; Zeng, J. Sequence Stratigraphic Models of The Early Miocene in Baiyun Sag, Pearl River Mouth basin. Mar. Geol. Front. 2014, 30, 18–26. [Google Scholar] [CrossRef]
- Catuneanu, O. Principles of Sequence Stratigraphy; Elsevier Science: Amsterdam, The Netherlands, 2006; pp. 253–272. [Google Scholar]
- Posamentier, H.W.; Kolla, V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Sediment. Res. 2003, 73, 367–388. [Google Scholar] [CrossRef]
- Galloway, W.E. Siliciclastic slope and base-of-slope depositional systems: Component facies, stratigraphic architecture, and classification. AAPG Bull. 1998, 82, 569–595. [Google Scholar]
- Posamentier, H.W.; Waiker, R.G. Turbidite facies models; integrating subsurface and outcrop. In Proceedings of the Canadian Society of Petroleum Geologists Diamond Jubilee Convention, Calgary, AB, Canada, 3–7 June 2002; p. 283. [Google Scholar]
- Calloway, W.E.; Hobday, D.K. Terrigenous Clastic Depositional Systems, 2nd ed.; Springer: Heidelberg, Germany, 1996; p. 489. [Google Scholar]
- Wu, W.; Xia, B.; Jiang, Z.; Luo, Z. Sedimentary evolution and hydrocarbon accumulation in the Baiyun depression, Zhujiangkou Basin. Sediment. Tethys Geol. 2013, 33, 25–33. [Google Scholar]
- Li, Y.; Zheng, R.; Gao, B.; Hu, X.; Wang, C. Reviews and Prospects on Submarine Fan Deposition—A Case Study of Zhujiang Submarine Fan System in Baiyun Depression, Pearl River Mouth Basin. Geol. LunPing 2010, 56, 549–560. [Google Scholar]
- Yu, S.; Mei, L.; Shi, H.; Qin, C.; Tang, J. Relationship between faults and hydrocarbon accumulation in Panyu low massif and north slope of Baiyun Sag, Pearl River Mouth Basin. Pet. Explor. Dev. 2007, 34, 562–565+579. [Google Scholar]
- Liao, J.; Wu, K.; Er, C. Deep Reservoir Characteristics and Effective Reservoir Control Factors in Baiyun Sag of Pearl River Mouth Basin. Earth Sci. 2022, 47, 2454–2467. [Google Scholar] [CrossRef]
- Ehrenberg, S.N. Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones: Discussion; Compaction and Porosity Evolution of Pliocene Sandstones, Ventura Basin, California: Discussion. AAPG Bull. 1989, 73, 1274–1276. [Google Scholar]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A. Sandstone Diagenesis and Reservoir Quality Prediction: Models, Myths, and Reality. AAPG Bull. 2010, 94, 1093–1132. [Google Scholar] [CrossRef]
- Wang, S.; Lin, C.; Li, H.; Zhang, M.; Zhang, Z.; Zhang, B. Sequence stratigraphy and sedimentary characteristics of the shelf-edge delta and slope fan systems in the Late Oligocene, Baiyun Sag, Pearl River Mouth Basin, China. Mar. Pet. Geol. 2022, 136. [Google Scholar] [CrossRef]
- Sun, R.; Ma, M.; Zhong, K.; Wang, X.; Zhao, Z.; Guo, S.; Yao, X.; Zhang, G. Geochemistry and zircon U-Pb ages of the Oligocene sediments in the Baiyun Sag, Zhujiang River Mouth Basin. Acta Oceanol. Sin. 2021, 40, 123–135. [Google Scholar] [CrossRef]
- Jiang, Z. Characteristics and Hydrocarbon Generation of the Marine Source Rock of the Upper Oligocene Zhuhai Formation in the Baiyun Sag, Pearl River Mouth Basin, South China Sea. Energy Fuels 2017, 31, 1450–1459. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhu, H.; Yang, X.; Zeng, H.; Zhang, G. Multistage progradational clinoform-set characterisation and evolution analysis of the Early Oligocene in the Baiyun Sag, Pearl River Mouth Basin, South China Sea. Mar. Pet. Geol. 2020, 112, 104048. [Google Scholar] [CrossRef]
- Xing, Z.; Lin, C.; Zhang, Z.; Qin, C.; Wang, S. Deposit Evolution of Continental Margin Delta in the Zhuhai Formation in Deep Water Area of Baiyun Sag. Spec. Oil Gas Reserv. 2017, 24, 15–20. [Google Scholar]
- Porebski, S.J.; Steel, R.J. Shelf-margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth-Sci. Rev. 2003, 62, 283–326. [Google Scholar] [CrossRef]
- Dixon, J.F.; Steel, R.J.; Olariu, C. Shelf-edge delta regime as apredictor of deep-water deposition. Sediment. Res. 2012, 82, 681–687. [Google Scholar] [CrossRef]
- Schwartz, T.M.; Graham, S.A. Stratigraphic architecture of a tide-influenced shelf-edge delta, Upper Cretaceous Dorotea Formation, Magallanes-Austral Basin, Patagonia. Sedimentol. 2015, 65, 1039–1077. [Google Scholar] [CrossRef]
- Mayall, M.J.; Yelding, C.A.; Oldroyd, J.D. Facies in shelf-edge delta-an example from the subsurface of the Gulf of Mexico, Middle Pliocene, Mississippi Canyon, Block-109. AAPG Bull. 1992, 76, 435–448. [Google Scholar]
- Perov, G.; Bhattacharya, J.P. Pleistocene shelf margin delta: Intradeltaic deformation and sediment bypass, northern Gulf of Mexico. AAPG Bull. 2011, 95, 1617–1641. [Google Scholar] [CrossRef]
- Han, X.; Wang, L.; Yang, D.; Zeng, Q.; Bai, H.; Guo, S.; Yang, X. Southern provenance supply of Zhuhai Formation and its significance on oil and gas accumulation in Baiyun Sag, Pearl River Mouth Basin. Nat. Gas Geosci. 2017, 28, 1537–1545. [Google Scholar]
- Liu, B.; Shen, J.; Pang, X.; He, M.; Lian, S.; Qu, L. Characteristics of continental delta deposits in Zhuhai Formation of Baiyun Depression in Pearl River Mouth Basin. Acta Pet. Sin. 2007, 28, 49–56+61. [Google Scholar] [CrossRef]
- Shu, L.; Zhang, X.; Zhang, Z.; Zhang, L.; Lei, S.; Gao, Z.; Han, X.; Yu, S. Evolution of the Shelf-margin Delta Sedimentary System in the Zhuhai Formation in the South Subsag of Baiyun Sag, Pearl River Mouth Basin. Sediment. 2022, 40, 825–837. [Google Scholar]
- Liu, B.; Pang, X.; Yan, C.; Liu, J.; Lian, S.; He, M.; Shen, J. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration. Acta Pet. Sin. 2011, 32, 234–242. [Google Scholar] [CrossRef]
- Shanmugam, G. 50 years of the turbidite paradigm(1950s–1990s): Deep-water processes and facies models: A critical perspective. Mar. Pet. Geol. 2000, 17, 285–342. [Google Scholar] [CrossRef]
- Saller, A.; Werner, K.; Sugiaman, F. Characteristics of Pleistocene deep-water fanlobes and their application to an Upper Mio-cene reservoir model, offshore East Kali mantan, Indonesia. AAPG Bull. 2008, 92, 919–949. [Google Scholar] [CrossRef]
- Yiwen, J.; Guangzeng, W.; Sanzhong, L. Geodynamic mechanism and classification of basins in the Earth system. Gondwana Res. 2022, 102, 200–228. [Google Scholar]
- Zeng, Q.; Chen, G.; Zhang, G.; Ji, M.; Han, Y.; Guo, S.; Wang, L. The Shelf-margin Delta Feature and Its Significance in Zhuhai Formation of Deep-water Area, Pearl River Mouth Basin. Aata Sed. Sin. 2015, 33, 595–606. [Google Scholar]
- Chen, Z.; Zhang, C.; Hou, G.; Feng, W.; Xu, Q. Fault distribution patterns and their control on sand bodies in Pinghu Formation of Xihu Sag in East China Sea Shelf Basin. Oil Gas Geol. 2020, 41, 824–837. [Google Scholar] [CrossRef]
- Dou, L. Controlling Effects of Contemporaneous Normal Fault in Different Scale on Deltaic Depositional Architecture: A Case Study from the Second Member of the Shahejie Formation in the Wangjiagang Oil Field, Dongying Depression. Ph.D. Thesis, China University of Petroleum (Beijing), Beijing, China, 2021. [Google Scholar] [CrossRef]
- Zhang, L.; Shu, Y.; Cai, G.; Long, Z.; Liu, D.; Wang, F. Eocene-Oligocene sedimentary environment evolution and its impact on hydrocarbon source conditions in eastern Pearl River Mouth Basin. Acta Pet. Sin. 2019, 40, 153–165. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Sun, H.; Shi, N.; Zhang, B.; Feng, X. Sedimentary characteristics of Oligocene shelf edge delta and their control on hydrocarbon accumulation in Pearl River Mouth Basin. Acta Pet. Sin. 2019, 40, 81–89. [Google Scholar] [CrossRef]
- Dixon, J.F.; Steel, R.J.; Olariu, C. River-dominated, shelfedge deltas: Delivery of sand across the shelf break in the absence of slope incision. Sedimentol. 2012, 59, 1133–1157. [Google Scholar] [CrossRef]
- Uroza, C.A.; Steel, R.J. A highstand shelf-margin delta system from the Eocene of West Spitsbergen, Norway. Sediment. Geol. 2008, 203, 229–245. [Google Scholar] [CrossRef]
- Carvajal, C.; Steel, R.; Petter, A. Sediment supply: The main driver of shelf-margin growth. Earth-Sci. Rev. 2009, 96, 221–248. [Google Scholar] [CrossRef]
- Liu, B.; Pang, X.; Wang, J.; Ren, J.; Liu, J.; Zheng, J.; Xiang, X.; Cai, G.; Wu, Y. Sedimentary system response process and hydrocarbon exploration significance of crust thinning zone at extensional continental margin of deep-water area in Pearl River Mouth Basin. Acta Pet. Sin. 2019, 40, 124–138. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, C.; He, M.; Zhang, Z.; Li, H. Sequence architecture and evolution of shelf-margin deltaic systems of the Late Oligocene in Pearl River Mouth Basin. Oil Gas Geol. 2019, 40, 875–885. [Google Scholar]
- Qian, C. The Study on Carbonate and Reefs Distribution of BaiyunDeep-Water Area in Pearl River Mouth Basin. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2018. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Z.; Mi, L.; Shen, H.; Guo, R. Sedimentary Evolution of Paleogene Series in Deep Water Area of Zhujiangkou and Qiongdongnan Basin. Acta Sedimentol. Sin. 2009, 27, 632–641. [Google Scholar]
- Mi, L.; Zhang, G.; Shen, H.; Liu, Z.; Guo, R.; Zhong, K.; Tian, J. Eocene-Lower Oligocene sedimentation characteristics of Baiyun Sag in the deep water area of Pearl River Mouth Basin. Acta Pet. Sin. 2008, 29, 29–34. [Google Scholar] [CrossRef]
- Xie, T.; Huang, C.; Zhang, H.; Li, B.; Xiao, Z.; Chen, S.; Cao, H.; Li, X.; Liu, C. Characteristics of synsedimentary faults and their controlling effect on sand bodies during the fault-depression transition in Baxian Depression. Xi’an Shiyou Univ. (Nat. Sci. Ed.) 2015, 30, 1–9+125. [Google Scholar]
- Wang, X.; He, S.; Shi, W.; Xu, X.; Wu, Y.; Wang, H.; Li, S. Control of the Sheling Formation deposition by contemporaneous faults derived from strike-slip movement in Liangjia-Wanchang district, Yitong Basin. Pet. Geophys. Prospect. 2013, 48, 134–143+10-11. [Google Scholar]
- Qian, Z.; Yang, Z.; Ji, Y.; Li, Y.; Wang, S.; Kang, Y.; Youliang, J.; Zhang, Z. Paleogene clastic reservoir which mainly controlled by the syndepositional faults in Shanghe Oilfield. Offshore Oil 2010, 30, 34–41. [Google Scholar] [CrossRef]
- Han, Z. Control Function of Syndepositional Fault on Fluxoturbidite Deposition—Taking Fault He125 of Shengli Oilfield as an Example. Shandong Univ. Sci. Technol. (Nat. Sci. Ed.), 2008; 27, 5–8+13. [Google Scholar] [CrossRef]
- Xue, C. The Effect of Faulting on Sedimentary System—An Example from North Slope of Baiyun Sag in Pearl River. Master’s Thesis, Yangtze University, Jingzhou, China, 2012. [Google Scholar]
- Yu, Y.; Zhang, J.; Zhang, Z.; Zhang, C.; Zeng, J.; Yu, L. Fault characteristics and its significances on hydrocarbon accumulation in northeastern Baiyun Sag, Pearl River Mouth Basin. Mar. Geol. Quat. Geol. 2022, 42, 133–139. [Google Scholar] [CrossRef]
- Shao, D. Researchi on the Fault Systems Evolution and Its Effact on the Hydrocarbon Accumulation in the Baiyun Sag, Pearl River Mouth Basin. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2007. [Google Scholar]
- Carvajal, F.R.; Butler, R.W.; Bond, C.E. Mapping faults in 3D seismic data—Why the method matters. Struct. Geol. 2023, 177. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, C.; Feng, Y. Structure ridge and hydrocarbon migration pathway system of Panyu Low Uplift in the Pearl River Mouth Basin. Offshore Oil. 2006, 26, 1–6. [Google Scholar]
- Bai, Q. Recognition and Quantitative Characterization of Low-grade Faults in Fault Block Reservoir: A Case Study of Shahejie Formation in Yong 3 Fault Block of Dongxin Oilfield. Ph.D. Thesis, China University of Petroleum (East China), Qingdao, China, 2019. Available online: https://d.wanfangdata.com.cn/thesis/D02711626 (accessed on 26 December 2024).
- Lin, W. Tectonic Characteristics and Sedimentary Evolutionof the South Terrace in Gaoyou Sag. Ph.D. Thesis, China University of Petroleum (East China), Qingdao, China, 2015. [Google Scholar]
- An, Y. The Feature of Basement Fault Complex and Its Effect on Cap Rockdeformation in the Lufeng Sag. Master’s Thesis, China University of Petroleum (Beijing), Beijing, China, 2017. [Google Scholar]
- Wang, J.; Liao, W.; Zeng, Z.; Zhao, L.; Cao, J.; Guo, R.; Zhou, J.; Ma, J. Development characteristics and combination pattern analysis of compression-torsion fault belt in Wuxia area, Junggar Basin. Oil Gas Geol. Oil Recovery 2020, 27, 1–10. [Google Scholar] [CrossRef]
- Ercoli, M.; Ercoli, M.; Carboni, F.; Akimbekova, A.; Carbonell, R.B.; Barchi, M.R. Evidencing subtle faults in deep seismic reflection profiles: Data pre-conditioning and seismic attribute analysis of the legacy CROP-04 profile. Front. Earth Sci. 2023, 11, 1119554. [Google Scholar] [CrossRef]
- Xiong, S.; He, Y.; Xiong, L.; Zhou, G.; Li, Z.; Yao, Q.; Zhang, J. Sedimentary evolution of the Middle Devonian Guanwushan Formation and its control on reservoir development in Western Sichuan. Mar. Pet. Geol. 2020, 25, 181–192. [Google Scholar] [CrossRef]
- Wang, H.; Hou, W.; Li, T.; Shi, Y. Control of slope break on sedimentary facies in foreland basin: A case study of Sangonghe Formation in northwestern margin of Junggar Basin. Cent. South Univ. (Nat. Sci. Ed.) 2022, 53, 1136–1145. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y.; Guo, J. Sand Body Distribution and Reservoir Characteristics under Structure-sedimentary Coupling Frame: Taking the Middle Sub-member of Sha-3 Member in Dongpu Sag as an Example. Sci. Technol. Eng. 2019, 23, 1912–1922. [Google Scholar] [CrossRef]
Attribute Name | Correlation Coefficient (Absolute Value) |
---|---|
RMS amplitude | 0.67 |
Arc length | 0.249 |
Half energy | <0.1 |
Average energy | 0.619 |
Average magnitude | 0.613 |
Average instantaneous frequency | <0.1 |
Average instantaneous phase | <0.1 |
Average peak amplitude | 0.216 |
Average trough amplitude | <0.1 |
Mean amplitude | <0.1 |
Maximum amplitude | 0.353 |
Minimum amplitude | <0.1 |
Number of zero crossing | <0.1 |
Sum energy | 0.617 |
Fault | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 |
---|---|---|---|---|---|---|---|---|---|
Upper wall thickness (m) | 292.85 | 394.17 | 390.04 | 569.72 | 569.72 | 574.62 | 620.51 | 633.40 | 772.87 |
Footwall thickness (m) | 354.47 | 401.38 | 401.38 | 470.22 | 574.62 | 537.24 | 584.16 | 620.51 | 633.40 |
Thickness difference (m) | 61.61 | 7.22 | 11.34 | 99.51 | 4.90 | 37.38 | 36.35 | 12.89 | 139.47 |
Seismic Section | |||
Planar distribution | |||
Fault correlation | graben-type | syntropy-type | transition zone |
Fault Correlation | graben-type | transition zone |
Sand Distribution Method | graben-type | transport-type |
Illustration | ||
Characteristic | The sunken interior provides plenty of room | Provides channels for sediment transport and changes the direction of sediment transport |
Fault correlation | syntropy-type | |
Sand Distribution Method | ladder-type | lifting-type |
Illustration | ||
Characteristic | It is conducive to sediment transport along the source direction | Provides a small amount of space to accommodate, while changing the direction of sediment transport |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Zhu, R.; Si, Z.; Liu, M. The Association Between Sand Body Distribution and Fault of Zhuhai Formation on the North Slope of Baiyun Sag, Pearl River Mouth Basin, China. Appl. Sci. 2025, 15, 412. https://doi.org/10.3390/app15010412
Zhao G, Zhu R, Si Z, Liu M. The Association Between Sand Body Distribution and Fault of Zhuhai Formation on the North Slope of Baiyun Sag, Pearl River Mouth Basin, China. Applied Sciences. 2025; 15(1):412. https://doi.org/10.3390/app15010412
Chicago/Turabian StyleZhao, Geer, Rui Zhu, Zhenyu Si, and Mengmeng Liu. 2025. "The Association Between Sand Body Distribution and Fault of Zhuhai Formation on the North Slope of Baiyun Sag, Pearl River Mouth Basin, China" Applied Sciences 15, no. 1: 412. https://doi.org/10.3390/app15010412
APA StyleZhao, G., Zhu, R., Si, Z., & Liu, M. (2025). The Association Between Sand Body Distribution and Fault of Zhuhai Formation on the North Slope of Baiyun Sag, Pearl River Mouth Basin, China. Applied Sciences, 15(1), 412. https://doi.org/10.3390/app15010412