Application of Machine Learning for Estimating the Physical Parameters of Three-Dimensional Fractures
<p>The study flow of CNN modelling to estimate fracture physical parameters.</p> "> Figure 2
<p>Illustration of some fracture samples used in this study: (<b>a</b>) synthetic fracture samples with surface roughness and mean aperture values, (<b>b</b>) fracture geometry of andesite rocks, and (<b>c</b>) subsamples of andesite rock fractures (lu refers to the lattice unit).</p> "> Figure 3
<p>Illustration of shale oil reservoir fracture samples. The image represents the full 800 × 100 × 800 sample.</p> "> Figure 4
<p>Histograms and box plots of the parameters in the training dataset: (<b>a</b>) permeability, (<b>b</b>) surface roughness, and (<b>c</b>) mean aperture.</p> "> Figure 5
<p>Histograms and box plots of the parameters in the andesite fracture dataset: (<b>a</b>) permeability, (<b>b</b>) surface roughness, and (<b>c</b>) mean aperture.</p> "> Figure 6
<p>Histograms and box plots of the parameters in the shale oil reservoir fracture dataset: (<b>a</b>) permeability, (<b>b</b>) surface roughness, and (<b>c</b>) mean aperture.</p> "> Figure 7
<p>The process of creating a composite image as the input data. The green slice represents the <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math> plane, and the blue slice represents the <math display="inline"><semantics> <mrow> <mi>z</mi> <mi>y</mi> </mrow> </semantics></math> plane. These slices are extracted, separated, and stacked into a composite image.</p> "> Figure 8
<p>Pre-trained model modification.</p> "> Figure 9
<p>Illustration of the CNN-1 model.</p> "> Figure 10
<p>Illustration of CNN-2 model diagram.</p> "> Figure 11
<p>Scatter plot of the predicted permeability versus the actual permeability of the (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> "> Figure 12
<p>Scatter plot of the predicted surface roughness value versus the actual roughness of the (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> "> Figure 13
<p>Scatter plot of the predicted mean aperture versus the actual mean aperture of the (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> "> Figure 14
<p>Scatter plot of the predicted permeability versus its actual permeability from the andesite fracture dataset: (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> "> Figure 15
<p>Scatter plot of the predicted surface roughness versus the actual surface roughness using an andesite fracture dataset: (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> "> Figure 16
<p>Scatter plot of the predicted mean aperture versus the actual mean aperture from the andesite fracture dataset: (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> "> Figure 17
<p>Scatter plot of the predicted permeability versus the actual permeability using a shale oil reservoir fracture dataset: (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> "> Figure 18
<p>Scatter plot of the predicted Hurst exponent versus the actual Hurst exponent using a shale oil reservoir fracture dataset: (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> "> Figure 19
<p>Scatter plot of the predicted mean aperture versus the actual mean aperture using a shale oil reservoir fracture dataset: (<b>a</b>) Xception, (<b>b</b>) DenseNet201, (<b>c</b>) VGG16, (<b>d</b>) CNN-1, and (<b>e</b>) CNN-2 models.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fracture Geometry Dataset
2.2. Surface Roughness and Mean Aperture Calculation
2.3. Permeability Calculation
2.4. Dataset Distribution
2.5. Data Preprocessing
2.6. CNN Models
2.7. Model Evaluation
3. Results and Discussion
3.1. Training Time Comparison
3.2. Model Performance
3.3. Model Testing Using Real Fractures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional neural network |
MAPE | Mean absolute percentage error |
fBm | Fractal Brownian motion |
LBM | Lattice Boltzmann method |
Appendix A
Layer (Type) | Output Shape | Parameter |
---|---|---|
Input layer | (None, 200, 200, 3) | 0 |
Xception | (None, 7, 7, 2048) | 18,314,304 |
GlobalMaxPooling2D | (None, 2048) | |
Dense | (None, 128) | 12,845,184 |
Dense | (None, 1) | 129 |
Layer (Type) | Output Shape | Parameter |
---|---|---|
Input layer | (None, 200, 200, 3) | 0 |
DenseNet201 | (None, 6, 6, 1920) | 18,314,304 |
GlobalMaxPooling2D | (None, 1920) | |
Dense | (None, 128) | 8,847,617 |
Dense | (None, 1) | 129 |
Layer (Type) | Output Shape | Parameter |
---|---|---|
Input layer | (None, 200, 200, 3) | 0 |
VGG16 | (None, 6, 6, 512) | 2,359,808 |
GlobalMaxPooling2D | (None, 512) | |
Dense | (None, 128) | 2,359,424 |
Dense | (None, 1) | 129 |
Layer (Type) | Output Shape | Param |
---|---|---|
Input layer | (None, 200, 200, 3) | 0 |
Conv2D | (None, 66, 66, 16) | 448 |
MaxPooling2D | (None, 33, 33, 16) | 0 |
Conv2D | (None, 11, 11, 32) | 4640 |
MaxPooling2D | (None, 6, 6, 32) | 0 |
Conv2D | (None, 2, 2, 64) | 18,496 |
MaxPooling2D | (None, 1, 1, 64) | 0 |
Flatten | (None, 64) | 0 |
Dense | (None, 1024) | 66,560 |
Dense | (None, 512) | 524,800 |
Dense | (None, 20) | 10,260 |
Dense | (None, 1) | 257 |
Layer (Type) | Output Shape | Param |
---|---|---|
Input layer | (None, 200, 200, 3) | 0 |
Conv2D | (None, 66, 66, 16) | 448 |
BatchNormalization | (None, 66, 66, 16) | 64 |
MaxPooling2D | (None, 99, 99, 16) | 0 |
Conv2D | (None, 97, 97, 32) | 4640 |
BatchNormalization | (None, 97, 97, 32) | 128 |
MaxPooling2D | (None, 49, 49, 32) | 0 |
Conv2D | (None, 47, 47, 64) | 18,496 |
BatchNormalization | (None, 47, 47, 64) | 256 |
MaxPooling2D | (None, 24, 24, 64) | 0 |
Flatten | (None, 36,864) | 0 |
Dense | (None, 1024) | 37,749,760 |
BatchNormalization | (None, 1024) | 4096 |
Dense | (None, 512) | 524,800 |
BatchNormalization | (None, 512) | 2048 |
Dense | (None, 128) | 65,664 |
BatchNormalization | (None, 128) | 512 |
Dense | (None, 1) | 129 |
References
- Koesoemadinata, R. Geologi Minyak dan Gas Bumi; Institut Teknologi Bandung: Bandung, Indonesia, 1980. [Google Scholar]
- Wardhana, B.; Arsyi, H.; Azransyah, T.; Mawardi, F.; Hafizh, I.; Mulyawan, M. Fractured Reservoir in Baong Formation, North Sumatra Basin, Indonesia. In Proceedings of the Joint Convention Bandung (JCB) 2021, Bandung, Indonesia, 1–3 December 2021. [Google Scholar]
- Joseph, J.; Gunda, N.S.K.; Mitra, S.K. On-chip porous media: Porosity and permeability measurements. Chem. Eng. Sci. 2013, 99, 274–283. [Google Scholar] [CrossRef]
- Sahimi, M. Flow and Transport in Porous Media and Fractured Rock; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Wang, M.; Chen, Y.F.; Ma, G.W.; Zhou, J.Q.; Zhou, C.B. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations. Adv. Water Resour. 2016, 96, 373–388. [Google Scholar] [CrossRef]
- Tian, X.; Deng, Y.; Jing, D.; Peng, X.; Duan, M. Research on the influence of geometry on nonlinear flow in constructed rough fractures by lattice Boltzmann simulation. Arab. J. Geosci. 2020, 13, 69. [Google Scholar] [CrossRef]
- Blaisonneau, A.; Peter-Borie, M.; Gentier, S. Evolution of fracture permeability with respect to fluid/rock interactions under thermohydromechanical conditions: Development of experimental reactive percolation tests. Geotherm. Energy 2016, 4, 3. [Google Scholar] [CrossRef]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef]
- Chung, T.; Wang, Y.D.; Armstrong, R.T.; Mostaghimi, P. Approximating Permeability of Microcomputed-Tomography Images Using Elliptic Flow Equations. SPE J. 2019, 24, 1154–1163. [Google Scholar] [CrossRef]
- Dharmawan, I.A.; Ulhag, R.Z.; Endyana, C.; Aufaristama, M. Numerical Simulation of non-Newtonian Fluid Flows through Fracture Network. IOP Conf. Ser. Earth Environ. Sci. 2016, 29, 012030. [Google Scholar] [CrossRef]
- Nurcahya, A.; Alexandra, A.; Akmal, F.; Dharmawan, I.A. The Lattice Boltzmann Method and Image Processing Techniques for Effective Parameter Estimation of Digital Rock. Appl. Sci. 2024, 14, 7509. [Google Scholar] [CrossRef]
- Az-Zahra, F.; Dharmawan, I.A. A Study of Geometrical Effects on Permeability Estimation in Three-dimensional Fractures Using the Lattice Boltzmann Method. CFD Lett. 2023, 15, 1–18. [Google Scholar] [CrossRef]
- Graczyk, K.M.; Matyka, M. Predicting porosity, permeability, and tortuosity of porous media from images by deep learning. Sci. Rep. 2020, 10, 21488. [Google Scholar] [CrossRef]
- Pugliese, R.; Regondi, S.; Marini, R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Sci. Manag. 2021, 4, 19–29. [Google Scholar] [CrossRef]
- Chahar, J.; Verma, J.; Vyas, D.; Goyal, M. Data-driven approach for hydrocarbon production forecasting using machine learning techniques. J. Pet. Sci. Eng. 2022, 217, 110757. [Google Scholar] [CrossRef]
- Kumar, T.; Seelam, N.K.; Rao, G.S. Lithology prediction from well log data using machine learning techniques: A case study from Talcher coalfield, Eastern India. J. Appl. Geophys. 2022, 199, 104605. [Google Scholar] [CrossRef]
- Liu, X.; Athanasiou, C.E.; Padture, N.P.; Sheldon, B.W.; Gao, H. A machine learning approach to fracture mechanics problems. Acta Mater. 2020, 190, 105–112. [Google Scholar] [CrossRef]
- Alqahtani, N.; Alzubaidi, F.; Armstrong, R.T.; Swietojanski, P.; Mostaghimi, P. Machine learning for predicting properties of porous media from 2d X-ray images. J. Pet. Sci. Eng. 2020, 184, 106514. [Google Scholar] [CrossRef]
- Ciresan, D.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, High Performance Convolutional Neural Networks for Image Classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence—Volume Two, Barcelona, Catalonia, Spain, 16–22 July 2011; AAAI Press: Barcelona, Spain, 2011; pp. 1237–1242. [Google Scholar] [CrossRef]
- Talo, M. Automated Classification of Histopathology Images Using Transfer Learning. Artif. Intell. Med. 2019, 101, 101743. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, J.; Sang, S.; Liang, W. A multiscale neural network model for the prediction on the equivalent permeability of discrete fracture network. J. Pet. Sci. Eng. 2023, 220, 111186. [Google Scholar] [CrossRef]
- Nurcahya, A.; Alexandra, A.; Zainuddin, S.; Az-Zahra, F.; Haq, M.; Dharmawan, I. Machine Learning Application of Two-Dimensional Fracture Properties Estimation. J. Geosci. Eng. Environ. Technol. 2023, 8, 1–5. [Google Scholar] [CrossRef]
- Aliakbardoust, E.; Rahimpour-Bonab, H. Integration of rock typing methods for carbonate reservoir characterization. J. Geophys. Eng. 2013, 10, 55004. [Google Scholar] [CrossRef]
- Meng, Y.; Jiang, J.; Wu, J.; Wang, D. Transformer-based Deep Learning Models for Predicting Permeability of Porous Media. Adv. Water Resour. 2023, 179, 104520. [Google Scholar] [CrossRef]
- Madadi, M.; VanSiclen, C.D.; Sahimi, M. Fluid flow and conduction in two-dimensional fractures with rough, self-affine surfaces: A comparative study. J. Geophys. Res. Solid Earth 2003, 108, 2396. [Google Scholar] [CrossRef]
- Askari, A.A.; Bashiri, G.; Kamali, M.R. Model Ranking and Optimization of Fractured Reservoir Using Streamline Simulation, Case Study a Gas Condensate Reservoir. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition—Volume All Days, Al-Khobar, Saudi Arabia, 9–11 May 2009; Society of Petroleum Engineer: Richardson, TX, USA, 2009; p. SPE-126074-MS. [Google Scholar] [CrossRef]
- Muntashir, A.W.; Dharmawan, I. SmartFract. 2015. Available online: http://grid.unpad.ac.id/~smartfract2/ (accessed on 18 October 2022).
- Sawayama, K.; Tsuji, T.; Jiang, F. Digitized Fracture Surfaces of Andesite Retrieved from Geothermal Area. 2021. Available online: https://www.digitalrocksportal.org/projects/394 (accessed on 11 May 2024).
- Sawayama, K.; Ishibashi, T.; Jiang, F.; Tsuji, T.; Nishizawa, O.; Fujimitsu, Y. Scale-independent relationship between permeability and resistivity in mated fractures with natural rough surfaces. Geothermics 2021, 94, 102065. [Google Scholar] [CrossRef]
- Song, W.; Prodanovic, M.; Santos, J.E.; Yao, J.; Zhang, K.; Yang, Y. Upscaling of Transport Properties in Complex Hydraulic Fracture Systems. SPE J. 2023, 28, 1026–1044. [Google Scholar] [CrossRef]
- Clegg, R.G. A Practical Guide to Measuring the Hurst Parameter. Int. J. Simul. Syst. Sci. Technol. 2006, 7, 3–14. [Google Scholar] [CrossRef]
- Latt, J.; Malaspinas, O.; Kontaxakis, D.; Parmigiani, A.; Lagrava, D.; Brogi, F.; Belgacem, M.B.; Thorimbert, Y.; Leclaire, S.; Li, S.; et al. Palabos: Parallel Lattice Boltzmann Solver. Comput. Math. Appl. 2021, 81, 334–350. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Rabbani, A.; Babaei, M.; Shams, R.; Wang, Y.D.; Chung, T. DeePore: A deep learning workflow for rapid and comprehensive characterization of porous materials. Adv. Water Resour. 2020, 146, 103787. [Google Scholar] [CrossRef]
- Haq, M.I.K.; Yulita, I.N.; Dharmawan, I.A. A study of transfer learning in digital rock properties measurement. Mach. Learn. Sci. Technol. 2023, 4, 035034. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27. [Google Scholar]
- López-Sánchez, M.; Hernández-Torruco, J.; Hernández-Ocaña, B.; Chávez-Bosquez, O. Comparative Study of Optimizers in the Training of a Convolutional Neural Network in a Binary Recognition Model. Res. Comput. Sci. 2021, 150, 73–82. [Google Scholar]
- Lewis, C.D. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting; Butterworth Scientific: London, UK, 1982. [Google Scholar]
- Wen, Y.W.; Peng, S.H.; Ting, C.K. Two-Stage Evolutionary Neural Architecture Search for Transfer Learning. IEEE Trans. Evol. Comput. 2021, 25, 928–940. [Google Scholar] [CrossRef]
- Barbiero, P.; Squillero, G.; Tonda, A.P. Modeling Generalization in Machine Learning: A Methodological and Computational Study. arXiv 2020, arXiv:2006.15680. [Google Scholar] [CrossRef]
Dataset | Number of Sample | Type of Dataset |
---|---|---|
Synthetic Fracture | 3878 | Training |
Synthetic Fracture | 970 | Testing |
Andesite Fracture [28] | 56 | Testing |
Shale Fracture [30] | 37 | Testing |
i | |
---|---|
0 | |
1,…, 6 | |
7,…, 18 |
MAPE (%) | Interpretation |
---|---|
<10 | Highly accurate |
10–20 | Good forecast |
20–50 | Reasonable forecast |
>50 | Inaccurate forecast |
Models | Time to Train |
---|---|
Xception | 2 h 13 min |
DenseNet201 | 1 h 56 min |
VGG16 | 2 h 10 min |
CNN-1 | 20 min |
CNN-2 | 42 min |
Model | MAPE | |
---|---|---|
Xception | 0.839 | 20.966% |
DenseNet201 | 0.948 | 14.171% |
VGG16 | 0.938 | 14.507% |
CNN-1 | 0.964 | 14.146% |
CNN-2 | 0.989 | 8.597% |
Model | MAPE | |
---|---|---|
Xception | 0.899 | 3.087% |
DenseNet201 | 0.909 | 2.916% |
VGG16 | 0.922 | 2.585% |
CNN-1 | 0.889 | 3.304% |
CNN-2 | 0.962 | 1.470% |
Model | MAPE | |
---|---|---|
Xception | 0.971 | 3.876% |
DenseNet201 | 0.988 | 2.425% |
VGG16 | 0.922 | 1.725% |
CNN-1 | 0.995 | 1.621% |
CNN-2 | 0.997 | 0.941% |
Model | MAPE | |
---|---|---|
Xception | 0.862 | 23.748% |
DenseNet201 | 0.943 | 21.417% |
VGG16 | 0.953 | 17.231% |
CNN-1 | 0.986 | 11.041% |
CNN-2 | 0.995 | 12.606% |
Model | MAPE | |
---|---|---|
Xception | −42.384 | 12.887% |
DenseNet201 | −37.615 | 12.004% |
VGG16 | −51.271 | 13.996% |
CNN-1 | −45.253 | 13.233% |
CNN-2 | −53.800 | 14.279% |
Model | MAPE | |
---|---|---|
Xception | 0.958 | 4.879% |
DenseNet201 | 0.963 | 5.029% |
VGG16 | 0.975 | 4.718% |
CNN-1 | 0.971 | 4.973% |
CNN-2 | 0.977 | 4.583% |
Model | MAPE | |
---|---|---|
Xception | 0.473 | 51.414% |
DenseNet201 | 0.195 | 42.712% |
VGG16 | 0.393 | 38.881% |
CNN-1 | 0.154 | 37.581% |
CNN-2 | 0.258 | 35.666% |
Model | MAPE | |
---|---|---|
Xception | −17.738 | 6.599% |
DenseNet201 | −10.114 | 4.493% |
VGG16 | −22.038 | 7.516% |
CNN-1 | −43.365 | 7.948% |
CNN-2 | −24.718 | 6.553% |
Model | MAPE | |
---|---|---|
Xception | 0.727 | 9.782% |
DenseNet201 | 0.719 | 9.689% |
VGG16 | 0.748 | 9.580% |
CNN-1 | 0.721 | 9.846% |
CNN-2 | 0.708 | 10.014% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akmal, F.; Nurcahya, A.; Alexandra, A.; Yulita, I.N.; Kristanto, D.; Dharmawan, I.A. Application of Machine Learning for Estimating the Physical Parameters of Three-Dimensional Fractures. Appl. Sci. 2024, 14, 12037. https://doi.org/10.3390/app142412037
Akmal F, Nurcahya A, Alexandra A, Yulita IN, Kristanto D, Dharmawan IA. Application of Machine Learning for Estimating the Physical Parameters of Three-Dimensional Fractures. Applied Sciences. 2024; 14(24):12037. https://doi.org/10.3390/app142412037
Chicago/Turabian StyleAkmal, Fadhillah, Ardian Nurcahya, Aldenia Alexandra, Intan Nurma Yulita, Dedy Kristanto, and Irwan Ary Dharmawan. 2024. "Application of Machine Learning for Estimating the Physical Parameters of Three-Dimensional Fractures" Applied Sciences 14, no. 24: 12037. https://doi.org/10.3390/app142412037
APA StyleAkmal, F., Nurcahya, A., Alexandra, A., Yulita, I. N., Kristanto, D., & Dharmawan, I. A. (2024). Application of Machine Learning for Estimating the Physical Parameters of Three-Dimensional Fractures. Applied Sciences, 14(24), 12037. https://doi.org/10.3390/app142412037