Joint Design of Transmitter Precoding and Optical Intelligent Reflecting Surface Configuration for Photon-Counting MIMO Systems Under Poisson Shot Noise
<p>IRS-assisted MU downlink MISO photon-counting communication system.</p> "> Figure 2
<p>Two-dimensional topological model of optical path based on IRS.</p> "> Figure 3
<p>Convergence performance comparison of the proposed AO algorithm and the scheme that only optimizes the precoding matrix.</p> "> Figure 4
<p>Comparison of normalized MSE of different schemes, where <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>16</mn> <mo>,</mo> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>64</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Comparison of normalized MSE of different schemes under different numbers of IRS units, where <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>16</mn> <mo>,</mo> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>b</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>170</mn> <mspace width="4pt"/> <mi>dBJ</mi> </mrow> </semantics></math>.</p> "> Figure 6
<p>Average BER performance of AO algorithm under different transmitting LEDs, where <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>36</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Average BER performance of AO algorithm with different numbers of IRS units, where <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Average BER performance of AO algorithm under different turbulence channels, where <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>36</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Average BER performance of AO algorithm under different background radiations, where <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Average BER performance of AO algorithm under imperfect CSI, where <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
1.1. Related Work
1.2. Contributions
- First, we consider the IRS model in the very near field and study the MSE optimization problem of a downlink optical IRS-assisted photon-counting communication system. Taking into account the power constraints in optical communication and the configuration constraints of the optical IRS, we transform it into a joint optimization problem of the optical IRS configuration matrix and the precoder.
- Next, we use statistical knowledge such as conditional probability and conditional expectation to derive the MSE closed-form expression of the IRS-assisted MU photon-counting system. Then we decompose the original problem into two convex subproblems through a series of convexification methods, and we analyze the convergence and complexity of the proposed alternating optimization (AO) algorithm.
- Finally, we numerically evaluate the IRS-assisted photon-counting communication system. We select several baseline schemes for comparison, including the IRS random allocation scheme and the ZF precoding scheme. The numerical results show that the proposed A0 algorithm effectively reduces the MSE and BER of the system, outperforms other schemes, and exhibits robustness under different turbulence intensities, background radiation, and imperfect CSI.
2. System Model
2.1. Transmitter
2.2. Channel Model
2.2.1. Channel Gains
2.2.2. IRS-Aided MIMO Channel
2.3. Receiver
3. Problem Formulation
4. Proposed Alternating Optimization Algorithm to Minimize MSE
4.1. Optimization Problem Transformation
4.2. Optimizations of Precoding Matrix
4.3. Optimization of IRS Configuration
4.4. Algorithm Summary and Analysis
Algorithm 1: Proposed precoding and IRS optimization algorithm |
4.5. Assumptions Summary
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IRS | Intelligent reflecting surfaces |
MIMO | Multiple-input, multiple-output |
NLOS | Non-line-of-sight |
MSE | Mean square error |
AO | Alternating optimization |
IoT | Internet of Things |
FSO | Free-space optical |
PCP | Poisson counting process |
AWGN | Additive white Gaussian noise |
ZF | Zero forcing |
BER | Bit error rate |
CSI | Channel state information |
OOK | On–off keying |
PD | Photo-detector |
LEDs | Light-emitting diodes |
DC | Direct current |
LEDs | Light-emitting diodes |
Probability density function |
Appendix A
References
- Jeon, H.B.; Kim, S.M.; Moon, H.J.; Kwon, D.H.; Lee, J.W.; Chung, J.M.; Han, S.K.; Chae, C.B.; Alouini, M.S. Free-space optical communications for 6G wireless networks: Challenges, opportunities, and prototype validation. IEEE Commun. Mag. 2023, 61, 116–121. [Google Scholar] [CrossRef]
- Al-Gailani, S.A.; Salleh, M.F.M.; Salem, A.A.; Shaddad, R.Q.; Sheikh, U.U.; Algeelani, N.A.; Almohamad, T.A. A survey of free space optics (FSO) communication systems, links, and networks. IEEE Access 2020, 9, 7353–7373. [Google Scholar] [CrossRef]
- Weichel, H. Laser Beam Propagation in the Atmosphere; SPIE Press: Bellingham, WA, USA, 1990; Volume 3. [Google Scholar]
- Jabeena, A.; Jayabarathi, T.; Aggarwal, R.; Singh, L. Review on optimization of wireless optical communication system. Trends OptoElectro Opt. Commun. 2019, 4, 9–19. [Google Scholar]
- Al-Gailani, S.; Mohammad, A.; Shaddad, R. Enhancement of free space optical link in heavy rain attenuation using multiple beam concept. Optik 2013, 124, 4798–4801. [Google Scholar] [CrossRef]
- Hasan, S.M.A.; Ahmed, S.; Islam, A.N. Simulation of a massive MIMO FSO system under atmospheric turbulence. In Proceedings of the 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 18–20 November 2021; pp. 1–6. [Google Scholar]
- Jahid, A.; Alsharif, M.H.; Hall, T.J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 2022, 200, 103311. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, J.; Zhong, C. A deep learning-based framework for low complexity multiuser MIMO precoding design. IEEE Trans. Wirel. Commun. 2022, 21, 11193–11206. [Google Scholar] [CrossRef]
- Feng, R.; Kong, J.; Guo, X.; Wang, J.; Xie, S. Joint precoding and power allocation in a FSO channel with signal-dependent noise. Appl. Opt. 2023, 62, 6060–6071. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bai, B.; Zhao, W.; Han, Z. A survey of optimization approaches for wireless physical layer security. IEEE Commun. Surv. Tutorials 2018, 21, 1878–1911. [Google Scholar] [CrossRef]
- Abou-Rjeily, C. Spatial multiplexing for photon-counting MIMO-FSO communication systems. IEEE Trans. Wirel. Commun. 2018, 17, 5789–5803. [Google Scholar] [CrossRef]
- Huang, J.; Li, C.; Dai, J.; Shu, R.; Zhang, L.; Wang, J. Real-time and high-speed underwater photon-counting communication based on SPAD and PPM symbol synchronization. IEEE Photon. J. 2021, 13, 7300209. [Google Scholar] [CrossRef]
- Ahmadypour, N.; Gohari, A. Transmission of a bit over a discrete Poisson channel with memory. IEEE Trans. Inf. Theory 2021, 67, 4710–4727. [Google Scholar] [CrossRef]
- Vishwakarma, N.; Swaminathan, R.; Diamantoulakis, P.D.; Karagiannidis, G.K. Performance analysis of optical reflecting surface-assisted optical space shift keying-based MIMO-FSO system. IEEE Trans. Commun. 2023, 71, 4751–4763. [Google Scholar] [CrossRef]
- Hail, C.U.; Michel, A.K.U.; Poulikakos, D.; Eghlidi, H. Optical metasurfaces: Evolving from passive to adaptive. Adv. Opt. Mater. 2019, 7, 1801786. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Liu, Q.; Swindlehurst, A.L. Dual-functional radar-communication waveform design: A symbol-level precoding approach. IEEE J. Sel. Top. Signal Process. 2021, 15, 1316–1331. [Google Scholar] [CrossRef]
- Qi, C.; Wang, X. Precoding design for energy efficiency of multibeam satellite communications. IEEE Commun. Lett. 2018, 22, 1826–1829. [Google Scholar] [CrossRef]
- Jain, S.; Mitra, R.; Bhatia, V. Adaptive precoding-based detection algorithm for massive MIMO visible light communication. IEEE Commun. Lett. 2018, 22, 1842–1845. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, X.; Ni, W.; Wang, X. A New Photon-Counting MU-MISO Ultraviolet Communication System With MMSE Precoding in Turbulence Channels. IEEE Trans. Veh. Technol. 2024, 73, 10805–10810. [Google Scholar] [CrossRef]
- Gai, L.; Hei, X.; Zhu, Q.; Yu, Y.; Yang, Y.; Chen, F.; Gu, Y.; Wang, G.; Li, W. Underwater wireless optical communication employing polarization multiplexing modulation and photon counting detection. Opt. Express 2022, 30, 43301–43316. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, T.; Yang, F.; Song, J.; Han, Z. Intelligent reflecting surface-aided visible light communications: Potentials and challenges. IEEE Veh. Technol. Mag. 2021, 17, 47–56. [Google Scholar] [CrossRef]
- Abumarshoud, H.; Mohjazi, L.; Dobre, O.A.; Di Renzo, M.; Imran, M.A.; Haas, H. LiFi through reconfigurable intelligent surfaces: A new frontier for 6G? IEEE Veh. Technol. Mag. 2021, 17, 37–46. [Google Scholar] [CrossRef]
- Elmossallamy, M.A.; Sultan, R.; Seddik, K.G.; Li, G.Y.; Han, Z. Maximizing dirty-paper coding rate of RIS-assisted multi-user MIMO broadcast channels. Intell. Converg. Netw. 2022, 3, 64–73. [Google Scholar] [CrossRef]
- Sun, S.; Mei, W.; Yang, F.; An, N.; Song, J.; Zhang, R. Optical intelligent reflecting surface assisted MIMO VLC: Channel modeling and capacity characterization. IEEE Trans. Wirel. Commun. 2023, 23, 2125–2139. [Google Scholar] [CrossRef]
- Sun, S.; Yang, F.; Song, J.; Zhang, R. Intelligent reflecting surface for MIMO VLC: Joint design of surface configuration and transceiver signal processing. IEEE Trans. Wirel. Commun. 2023, 22, 5785–5799. [Google Scholar] [CrossRef]
- Chu, H.; Pan, X.; Jiang, J.; Li, X.; Zheng, L. Adaptive and Robust Channel Estimation for IRS-Aided Millimeter-Wave Communications. IEEE Trans. Veh. Technol. 2024, 73, 9411–9423. [Google Scholar] [CrossRef]
- Farid, A.A.; Hranilovic, S. Outage capacity optimization for free-space optical links with pointing errors. J. Light. Technol. 2007, 25, 1702–1710. [Google Scholar] [CrossRef]
- Najafi, M.; Schmauss, B.; Schober, R. Intelligent reflecting surfaces for free space optical communication systems. IEEE Trans. Commun. 2021, 69, 6134–6151. [Google Scholar] [CrossRef]
- Ratni, B.; de Lustrac, A.; Piau, G.P.; Burokur, S.N. Reconfigurable meta-mirror for wavefronts control: Applications to microwave antennas. Opt. Express 2018, 26, 2613–2624. [Google Scholar] [CrossRef] [PubMed]
- Jamali, V.; Michalopoulos, D.S.; Uysal, M.; Schober, R. Link allocation for multiuser systems with hybrid RF/FSO backhaul: Delay-limited and delay-tolerant designs. IEEE Trans. Wirel. Commun. 2016, 15, 3281–3295. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L.; Hopen, C.Y. Laser Beam Scintillation with Applications; SPIE Press: Bellingham, WA, USA, 2001; Volume 99. [Google Scholar]
- Prokeš, A. Modeling of atmospheric turbulence effect on terrestrial FSO link. Radioengineering 2009, 18, 42–47. [Google Scholar]
- Lim, H.; Yoon, D. Generalized Moment-Based Estimation of Gamma-Gamma Fading Channel Parameters. IEEE Trans. Veh. Technol. 2018, 67, 809–811. [Google Scholar] [CrossRef]
- Lim, H.; Yoon, D. Asymptotic ber comparison of mpsk and mdpsk in lognormal fading channels. IEEE Trans. Veh. Technol. 2015, 65, 2802–2806. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Wu, Y.; Wang, H.; Li, Y.; Tian, P.; Xiu, S. An intelligent reflecting surfaces based iterative PhC-MIMO system for atmospheric optical channels. Microw. Opt. Technol. Lett. 2023, 65, 348–355. [Google Scholar] [CrossRef]
- Jamali, V.; Ajam, H.; Najafi, M.; Schmauss, B.; Schober, R.; Poor, H.V. Intelligent reflecting surface assisted free-space optical communications. IEEE Commun. Mag. 2021, 59, 57–63. [Google Scholar] [CrossRef]
- Fray, S.; Johnson, F.; Jones, R.; McLean, T.; Pike, E. Photon-counting distributions of modulated laser beams. Phys. Rev. 1967, 153, 357. [Google Scholar] [CrossRef]
- Kong, Z.; Yang, S.; Wu, F.; Peng, S.; Zhong, L.; Hanzo, L. Iterative distributed minimum total MSE approach for secure communications in MIMO interference channels. IEEE Trans. Inf. For. Secur. 2015, 11, 594–608. [Google Scholar] [CrossRef]
- Zhao, L.; Cai, K.; Jiang, M. Multiuser Precoded MIMO Visible Light Communication Systems Enabling Spatial Dimming. J. Light. Technol. 2020, 38, 5624–5634. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, version 2.1; CVX Research: Austin, TX, USA, 2014. [Google Scholar]
- Potra, F.A.; Wright, S.J. Interior-point methods. J. Comput. Appl. Math. 2000, 124, 281–302. [Google Scholar] [CrossRef]
- Gong, C.; Xu, Z. Channel estimation and signal detection for optical wireless scattering communication with inter-symbol interference. IEEE Trans. Wirel. Commun. 2015, 14, 5326–5337. [Google Scholar] [CrossRef]
- Elamassie, M.; Uysal, M. Vertical underwater visible light communication links: Channel modeling and performance analysis. IEEE Trans. Wirel. Commun. 2020, 19, 6948–6959. [Google Scholar] [CrossRef]
- Chakraborty, K.; Narayan, P. Reliable Communication over an Optical Fading Channel. In Proceedings of the 2006 IEEE Information Theory Workshop—ITW ’06 Punta del Este, Punta del Este, Uruguay, 13–17 March 2006; pp. 6–10. [Google Scholar]
Parameter | Value |
---|---|
Optical wavelength () | 1550 nm |
Symbol duration () | 1 µs |
PD efficiency () | 0.5 |
IRS panel energy reflection efficiency () | 1 |
End-to-end distance () | 800 m |
Horizontal angle of emitted beam () | |
Horizontal angle of IRS panel () | |
Horizontal angle of PD panel () | |
PD aperture radius () | 2.5 cm |
Area of an IRS unit | |
Maximum number of iterations () | 30 |
Scintillation parameters () | 1, 1 |
Background radiation energy per bit () | −170 dBJ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhou, X.; Li, F.; Chen, Y.; Cai, C.; Xu, H. Joint Design of Transmitter Precoding and Optical Intelligent Reflecting Surface Configuration for Photon-Counting MIMO Systems Under Poisson Shot Noise. Appl. Sci. 2024, 14, 11994. https://doi.org/10.3390/app142411994
Wang J, Zhou X, Li F, Chen Y, Cai C, Xu H. Joint Design of Transmitter Precoding and Optical Intelligent Reflecting Surface Configuration for Photon-Counting MIMO Systems Under Poisson Shot Noise. Applied Sciences. 2024; 14(24):11994. https://doi.org/10.3390/app142411994
Chicago/Turabian StyleWang, Jian, Xiaolin Zhou, Fanghua Li, Yongkang Chen, Chaoyi Cai, and Haoze Xu. 2024. "Joint Design of Transmitter Precoding and Optical Intelligent Reflecting Surface Configuration for Photon-Counting MIMO Systems Under Poisson Shot Noise" Applied Sciences 14, no. 24: 11994. https://doi.org/10.3390/app142411994
APA StyleWang, J., Zhou, X., Li, F., Chen, Y., Cai, C., & Xu, H. (2024). Joint Design of Transmitter Precoding and Optical Intelligent Reflecting Surface Configuration for Photon-Counting MIMO Systems Under Poisson Shot Noise. Applied Sciences, 14(24), 11994. https://doi.org/10.3390/app142411994