Experimental Determination of Circumferential Mechanical Properties of GFRP Pipes Using the Split-Disk Method: Evaluating the Impact of Aggressive Environments
<p>Split-disk test specimens: (<b>a</b>) tested samples; (<b>b</b>) dimensional characteristics.</p> "> Figure 2
<p>Samples immersed at high temperature.</p> "> Figure 3
<p>Split-disk tensile test system.</p> "> Figure 4
<p>Circumferential tensile testing.</p> "> Figure 5
<p>Strain gauge measurements: (<b>a</b>) strain gauge connection; (<b>b</b>) data record.</p> "> Figure 6
<p>The geometrical model considered in finite element analysis.</p> "> Figure 7
<p>The finite element model.</p> "> Figure 8
<p>Specimens after failure.</p> "> Figure 9
<p>Experimental results: (<b>a</b>) circumferential ultimate tensile strength (UTS), (<b>b</b>) circumferential modulus (E), (<b>c</b>) Poisson’s ratio (<math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mrow> <mi>y</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>). The uncertainty range is represented as error bars, calculated using the standard deviation of the measured values.</p> "> Figure 9 Cont.
<p>Experimental results: (<b>a</b>) circumferential ultimate tensile strength (UTS), (<b>b</b>) circumferential modulus (E), (<b>c</b>) Poisson’s ratio (<math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mrow> <mi>y</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>). The uncertainty range is represented as error bars, calculated using the standard deviation of the measured values.</p> "> Figure 10
<p>The distribution of circumferential (<b>a</b>) and axial (<b>b</b>) strains.</p> "> Figure 11
<p>The distribution of circumferential (<b>a</b>) and axial (<b>b</b>) stresses.</p> "> Figure 12
<p>Pareto charts for the following: (<b>a</b>) tensile strength; (<b>b</b>) tensile modulus; (<b>c</b>) Poisson’s ratio (factors: A—temperature °C, B—solution type).</p> "> Figure 12 Cont.
<p>Pareto charts for the following: (<b>a</b>) tensile strength; (<b>b</b>) tensile modulus; (<b>c</b>) Poisson’s ratio (factors: A—temperature °C, B—solution type).</p> "> Figure 13
<p>Main effect plots for the following: (<b>a</b>) tensile strength; (<b>b</b>) tensile modulus; (<b>c</b>) Poisson’s ratio.</p> "> Figure 13 Cont.
<p>Main effect plots for the following: (<b>a</b>) tensile strength; (<b>b</b>) tensile modulus; (<b>c</b>) Poisson’s ratio.</p> "> Figure 14
<p>Interaction plots for the following: (<b>a</b>) tensile strength; (<b>b</b>) tensile modulus; (<b>c</b>) Poisson’s ratio.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Immersion Conditions
2.2. Design of Experiments
2.3. Mechanical Testing
2.4. Theoretical Analysis of the Stress State in the Zone of Circular Notches
3. Results and Discussion
3.1. Tensile Properties
3.2. Numerical Results
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morampudi, P.; Namala, K.K.; Gajjela, Y.K.; Barath, M.; Prudhvi, G. Review on Glass Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 43, 314–319. [Google Scholar] [CrossRef]
- Călin, C.; Diniță, A.; Brănoiu, G.; Popovici, D.R.; Tănase, M.; Sirbu, E.-E.; Portoacă, A.-I.; Mihai, S. Assessment of Environmental Impact on Glass-Fiber-Reinforced Polymer Pipes Mechanical and Thermal Properties. Polymers 2024, 16, 1779. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.S. Effect of Hydrothermal Ageing on Glass Fibre Reinforced Plastic (GFRP) Composite Laminates Exposed to Water and Salt Water. Int. J. Curr. Engg. Technol. 2013, 2, 47–53. [Google Scholar] [CrossRef]
- Fitriah, S.N.; Abdul Majid, M.S.; Ridzuan, M.J.M.; Daud, R.; Gibson, A.G.; Assaleh, T.A. Influence of Hydrothermal Ageing on the Compressive Behaviour of Glass Fibre/Epoxy Composite Pipes. Compos. Struct. 2017, 159, 350–360. [Google Scholar] [CrossRef]
- Zhao, Y.; Druzhinin, P.; Ivens, J.; Vandepitte, D.; Lomov, S.V. Split-Disk Test with 3D Digital Image Correlation Strain Measurement for Filament Wound Composites. Compos. Struct. 2021, 263, 113686. [Google Scholar] [CrossRef]
- Kaynak, C.; Salim Erdiller, E.; Parnas, L.; Senel, F. Use of Split-Disk Tests for the Process Parameters of Filament Wound Epoxy Composite Tubes. Polym. Test. 2005, 24, 648–655. [Google Scholar] [CrossRef]
- Sapozhnikov, S.B.; Semashko, M.Y.; Shanygin, A.N. Measurement of Hoop Strength in Wound Composite Ring Specimen Using Modified Split Disk Test. Mech. Compos. Mater. 2023, 59, 77–88. [Google Scholar] [CrossRef]
- Dick, C.P.; Korkolis, Y.P. Mechanics and Full-Field Deformation Study of the Ring Hoop Tension Test. Int. J. Solids Struct. 2014, 51, 3042–3057. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Cho, W.-M.; Kim, C.-G. Measurement of Modulus in Filament Wound Ring Specimen Using Split Disk Test. Exp Tech. 1997, 21, 25–28. [Google Scholar] [CrossRef]
- Chen, J.F.; Li, S.Q.; Bisby, L.A.; Ai, J. FRP Rupture Strains in the Split-Disk Test. Compos. Part B Eng. 2011, 42, 962–972. [Google Scholar] [CrossRef]
- Benyahia, H.; Tarfaoui, M.; El Moumen, A.; Ouinas, D. Prediction of Notched Strength for Cylindrical Composites Pipes under Tensile Loading Conditions. Compos. Part B Eng. 2018, 150, 104–114. [Google Scholar] [CrossRef]
- Putic, S.; Stamenovic, M.; Bajceta, B.; Vitkovic, D. Determination of Tension Strength in the Longitudinal and Circumferentional Direction in Glass-Polyester Composite Pipes. Acta Per Tech 2009, 40, 155–163. [Google Scholar] [CrossRef]
- Bobba, S.; Leman, Z.; Zainudin, E.S.; Sapuan, S.M. Hoop Tensile Strength Behaviour between Different Thicknesses E-Glass and S-Glass FRP Rings. AIMS Mater. Sci. 2019, 6, 315–327. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiore, V. A Simplified Predictive Approach to Assess the Mechanical Behavior of Pinned Hybrid Composites Aged in Salt-Fog Environment. Compos. Struct. 2020, 249, 112589. [Google Scholar] [CrossRef]
- Mahmoud, M.K.; Tantawi, S.H. Effect of Strong Acids on Mechanical Properties of Glass/Polyester GRP Pipe at Normal and High Temperatures. Polym.-Plast. Technol. Eng. 2003, 42, 677–688. [Google Scholar] [CrossRef]
- Stamenović, M.; Putić, S.; Rakin, M.; Medjo, B.; Čikara, D. Effect of Alkaline and Acidic Solutions on the Tensile Properties of Glass–Polyester Pipes. Mater. Des. 2011, 32, 2456–2461. [Google Scholar] [CrossRef]
- Liao, D.; Gu, T.; Liu, J.; Chen, S.; Zhao, F.; Len, S.; Dou, J.; Qian, X.; Wang, J. Degradation Behavior and Ageing Mechanism of E-Glass Fiber Reinforced Epoxy Resin Composite Pipes under Accelerated Thermal Ageing Conditions. Compos. Part B Eng. 2024, 270, 111131. [Google Scholar] [CrossRef]
- Tannous, F.E.; Saadatmanesh, H. Environmental Effects on the Mechanical Properties of E-Glass FRP Rebars. Mater. J. 1998, 95, 87–100. [Google Scholar] [CrossRef]
- Perillo, G.; Vacher, R.; Grytten, F.; Sørbø, S.; Delhaye, V. Material Characterisation and Failure Envelope Evaluation of Filament Wound GFRP and CFRP Composite Tubes. Polym. Test. 2014, 40, 54–62. [Google Scholar] [CrossRef]
- D 2290; Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe by Split Disk Method. ASTM: West Conshohocken, PA, USA, 2003.
- Silva, M.A.G.; Da Fonseca, B.S.; Biscaia, H. On Estimates of Durability of FRP Based on Accelerated Tests. Compos. Struct. 2014, 116, 377–387. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, Y.; Zhang, C.; Ma, C.; Li, Y.; Miao, J.; Wang, G.; Cheng, H. Research on Acid Aging and Damage Pattern Recognition of Glass Fiber-Reinforced Plastic Oil and Gas Gathering Pipelines Based on Acoustic Emission. Polymers 2024, 16, 2272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Deng, Z. Effects of Seawater Environment on the Degradation of GFRP Composites by Molecular Dynamics Method. Polymers 2022, 14, 2804. [Google Scholar] [CrossRef] [PubMed]
- CSA S806-12 (R2017); Design and Construction of Building Components with Fiber-Reinforced Polymers. Canadian Standards Association: Toronto, ON, Canada, 2017.
- Martynenko, V.G.; Lvov, G.I.; Ulianov, Y.N. Experimental Investigation of Anisotropic Viscoelastic Properties of Glass Fiber-Reinforced Polymeric Composite Material. Polym. Polym. Compos. 2019, 27, 323–336. [Google Scholar] [CrossRef]
- Lekhnitskii, S.G. Anisotropic Plates; Gordon and Breach Science Publishers: London, UK, 1968. [Google Scholar]
- Hajmoosa, A.; Mahmoudi, M.; Ebrahimzadeh, M.; Shakiba, M.; Bazli, M. Tensile Strength Retention of Glass Fibre-Reinforced Stirrups Subjected to Aggressive Solutions: Effect of Environmental Condition, Stirrup Shape and Stirrup Diameter. Mater Struct 2024, 57, 31. [Google Scholar] [CrossRef]
- Tefera, G.; Adali, S.; Bright, G. Mechanical Behavior of GFRP Laminates Exposed to Thermal and Moist Environmental Conditions: Experimental and Model Assessment. Polymers 2022, 14, 1523. [Google Scholar] [CrossRef]
Immersing Solution | pH | |
---|---|---|
at 20 °C | at 50 °C | |
saltwater | 7.06 | 8.12 |
alkaline solution | 13.05 | 12.38 |
Test no. | Temperature, °C | Environment |
---|---|---|
1 | 50 | saltwater |
2 | 50 | alkaline solution |
3 | 20 | saltwater |
4 | 20 | alkaline solution |
5 | 50 | air |
6 | 20 | air |
Exp. no. | Immersing Conditions | E Axial (Ex), GPa | E Circ. (Ey), GPa | Major Poisson’s Ratio | Minor Poisson’s Ratio (Formula (28) |
---|---|---|---|---|---|
1 | 50°—saltwater | 11.17 | 20.47 | 0.53 | 0.29 |
2 | 50°—alkaline solution | 12.83 | 18.28 | 0.47 | 0.33 |
3 | 20°—saltwater | 11.64 | 19.84 | 0.67 | 0.39 |
4 | 20°—alkaline solution | 13.32 | 21.72 | 0.61 | 0.37 |
5 | 50°—air | 13.38 | 18.99 | 0.58 | 0.41 |
6 | 20°—air | 13.89 | 23.5 | 0.62 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tănase, M.; Diniță, A.; Lvov, G.; Portoacă, A.I. Experimental Determination of Circumferential Mechanical Properties of GFRP Pipes Using the Split-Disk Method: Evaluating the Impact of Aggressive Environments. Appl. Sci. 2024, 14, 11845. https://doi.org/10.3390/app142411845
Tănase M, Diniță A, Lvov G, Portoacă AI. Experimental Determination of Circumferential Mechanical Properties of GFRP Pipes Using the Split-Disk Method: Evaluating the Impact of Aggressive Environments. Applied Sciences. 2024; 14(24):11845. https://doi.org/10.3390/app142411845
Chicago/Turabian StyleTănase, Maria, Alin Diniță, Gennadiy Lvov, and Alexandra Ileana Portoacă. 2024. "Experimental Determination of Circumferential Mechanical Properties of GFRP Pipes Using the Split-Disk Method: Evaluating the Impact of Aggressive Environments" Applied Sciences 14, no. 24: 11845. https://doi.org/10.3390/app142411845
APA StyleTănase, M., Diniță, A., Lvov, G., & Portoacă, A. I. (2024). Experimental Determination of Circumferential Mechanical Properties of GFRP Pipes Using the Split-Disk Method: Evaluating the Impact of Aggressive Environments. Applied Sciences, 14(24), 11845. https://doi.org/10.3390/app142411845