Cueing Interventions for Gait and Balance in Parkinson’s Disease: A Scoping Review of Current Evidence
Abstract
:1. Introduction
2. Methods
2.1. Review Question
2.2. Eligibility Criteria
2.3. Exclusion Criteria
2.4. Search Strategy
- MEDLINE (PubMed):
- Cochrane Central:
- Scopus:
- PEDro:
- Web of Science:
2.5. Study Selection
2.6. Data Extraction and Data Synthesis
3. Results
4. Discussion
4.1. Interpretation and Clinical Relevance
4.2. Limitations
4.3. Future Directions
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalia, L.V.; Lang, A.E. Parkinson’s Disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Andlin-Sobocki, P.; Jönsson, B.; Wittchen, H.-U.; Olesen, J. Cost of Disorders of the Brain in Europe. Eur. J. Neurol. 2005, 12, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Abyu, G.Y.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; et al. Global, Regional, and National Burden of Neurological Disorders during 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897. [Google Scholar] [CrossRef] [PubMed]
- Fania, A.; Monaco, A.; Amoroso, N.; Bellantuono, L.; Cazzolla Gatti, R.; Firza, N.; Lacalamita, A.; Pantaleo, E.; Tangaro, S.; Velichevskaya, A.; et al. A Dementia Mortality Rates Dataset in Italy (2012–2019). Sci. Data 2023, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, R.; Schapira, A.H.V. Parkinson Disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Taylor, K.S.M.; Cook, J.A.; Counsell, C.E. Heterogeneity in Male to Female Risk for Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 905–906. [Google Scholar] [CrossRef] [PubMed]
- Cerri, S.; Mus, L.; Blandini, F. Parkinson’s Disease in Women and Men: What’s the Difference? J. Park. Dis. 2019, 9, 501–515. [Google Scholar] [CrossRef]
- Dahodwala, N.; Shah, K.; He, Y.; Wu, S.S.; Schmidt, P.; Cubillos, F.; Willis, A.W. Sex Disparities in Access to Caregiving in Parkinson Disease. Neurology 2018, 90, e48–e54. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W. Non-Motor Symptoms in Parkinson’s Disease. Eur. J. Neurol. 2008, 15 (Suppl. S1), 14–20. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, A.; Svensson, M.; Jacobi, F.; Allgulander, C.; Alonso, J.; Beghi, E.; Dodel, R.; Ekman, M.; Faravelli, C.; Fratiglioni, L.; et al. Cost of Disorders of the Brain in Europe 2010. Eur. Neuropsychopharmacol. 2011, 21, 718–779. [Google Scholar] [CrossRef]
- Winter, Y.; Balzer-Geldsetzer, M.; von Campenhausen, S.; Spottke, A.; Eggert, K.; Oertel, W.H.; Dodel, R. Trends in Resource Utilization for Parkinson’s Disease in Germany. J. Neurol. Sci. 2010, 294, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force Report on the Hoehn and Yahr Staging Scale: Status and Recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef]
- Hagell, P.; Nordling, S.; Reimer, J.; Grabowski, M.; Persson, U. Resource Use and Costs in a Swedish Cohort of Patients with Parkinson’s Disease. Mov.Disord. Off. J. Mov. Disord. Soc. 2002, 17, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Riccò, M.; Vezzosi, L.; Balzarini, F.; Gualerzi, G.; Ranzieri, S.; Signorelli, C.; Colucci, M.E.; Bragazzi, N.L. Prevalence of Parkinson Disease in Italy: A Systematic Review and Meta-Analysis. Acta Bio Medica Atenei Parm. 2020, 91, e2020088. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Prajjwal, P.; Flores Sanga, H.S.; Acharya, K.; Tango, T.; John, J.; Rodriguez, R.S.C.; Dheyaa Marsool Marsool, M.; Sulaimanov, M.; Ahmed, A.; Hussin, O.A. Parkinson’s Disease Updates: Addressing the Pathophysiology, Risk Factors, Genetics, Diagnosis, along with the Medical and Surgical Treatment. Ann. Med. Surg. 2023, 85, 4887–4902. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H.V. National Institute for Clinical Excellence Non-Motor Symptoms of Parkinson’s Disease: Diagnosis and Management. Lancet Neurol. 2006, 5, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Del Tredici, K. Cortico-Basal Ganglia-Cortical Circuitry in Parkinson’s Disease Reconsidered. Exp. Neurol. 2008, 212, 226–229. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the Diagnosis of Parkinson’s Disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Poewe, W.; Rascol, O. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and Recommendations. Mov. Disord. 2003, 18, 738–750. [Google Scholar] [CrossRef]
- Katzenschlager, R.; Head, J.; Schrag, A.; Ben-Shlomo, Y.; Evans, A.; Lees, A.J. Parkinson’s Disease Research Group of the United Kingdom Fourteen-Year Final Report of the Randomized PDRG-UK Trial Comparing Three Initial Treatments in PD. Neurology 2008, 71, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Radder, D.L.M.; Nonnekes, J.; van Nimwegen, M.; Eggers, C.; Abbruzzese, G.; Alves, G.; Browner, N.; Chaudhuri, K.R.; Ebersbach, G.; Ferreira, J.J.; et al. Recommendations for the Organization of Multidisciplinary Clinical Care Teams in Parkinson’s Disease. J. Park. Dis. 2020, 10, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Berardelli, A.; Wenning, G.K.; Antonini, A.; Berg, D.; Bloem, B.R.; Bonifati, V.; Brooks, D.; Burn, D.J.; Colosimo, C.; Fanciulli, A.; et al. EFNS/MDS-ES/ENS [Corrected] Recommendations for the Diagnosis of Parkinson’s Disease. Eur. J. Neurol. 2013, 20, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Nijkrake, M.J.; Keus, S.H.J.; Kalf, J.G.; Sturkenboom, I.H.W.M.; Munneke, M.; Kappelle, A.C.; Bloem, B.R. Allied Health Care Interventions and Complementary Therapies in Parkinson’s Disease. Park. Relat. Disord. 2007, 13 (Suppl. S3), S488–S494. [Google Scholar] [CrossRef]
- Keus, S.H.J.; Bloem, B.R.; Hendriks, E.J.M.; Bredero-Cohen, A.B.; Munneke, M. Practice Recommendations Development Group Evidence-Based Analysis of Physical Therapy in Parkinson’s Disease with Recommendations for Practice and Research. Mov. Disord. 2007, 22, 451–460; quiz 600. [Google Scholar] [CrossRef]
- Tedeschi, R. Automated Mechanical Peripheral Stimulation for Gait Rehabilitation in Parkinson’s Disease: A Comprehensive Review. Clin. Park. Relat. Disord. 2023, 9, 100219. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, R.; Platano, D.; Donati, D.; Giorgi, F. Harnessing Mirror Neurons: A New Frontier in Parkinson’s Disease Rehabilitation-A Scoping Review of the Literature. J. Clin. Med. 2024, 13, 4539. [Google Scholar] [CrossRef]
- Tedeschi, R. Neurorehabilitation in Multiple Sclerosis: Evaluating the Efficacy of the Bobath Concept on Motor and Balance Outcomes. Egypt. Rheumatol. Rehabil. 2024, 51, 54. [Google Scholar] [CrossRef]
- Nieuwboer, A.; Kwakkel, G.; Rochester, L.; Jones, D.; van Wegen, E.; Willems, A.M.; Chavret, F.; Hetherington, V.; Baker, K.; Lim, I. Cueing Training in the Home Improves Gait-Related Mobility in Parkinson’s Disease: The RESCUE Trial. J. Neurol. Neurosurg. Psychiatry 2007, 78, 134–140. [Google Scholar] [CrossRef]
- Glickstein, M.; Stein, J. Paradoxical Movement in Parkinson’s Disease. Trends Neurosci. 1991, 14, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Rutz, D.G.; Benninger, D.H. Physical Therapy for Freezing of Gait and Gait Impairments in Parkinson Disease: A Systematic Review. PM&R 2020, 12, 1140–1156. [Google Scholar] [CrossRef]
- De Icco, R.; Tassorelli, C.; Berra, E.; Bolla, M.; Pacchetti, C.; Sandrini, G. Acute and Chronic Effect of Acoustic and Visual Cues on Gait Training in Parkinson’s Disease: A Randomized, Controlled Study. Park. Dis. 2015, 2015, 978590. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Filoni, S.; Pullia, M.; Billeri, L.; Tomasello, P.; Portaro, S.; Di Lorenzo, G.; Tomaino, C.; Bramanti, P. Walking to Your Right Music: A Randomized Controlled Trial on the Novel Use of Treadmill plus Music in Parkinson’s Disease. J. Neuroeng. Rehabil. 2019, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Capato, T.T.C.; de Vries, N.M.; IntHout, J.; Barbosa, E.R.; Nonnekes, J.; Bloem, B.R. Multimodal Balance Training Supported by Rhythmical Auditory Stimuli in Parkinson’s Disease: A Randomized Clinical Trial. J. Park. Dis. 2020, 10, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, R. Can Beneficial Frequencies in Physiotherapy Help Treatment? Scoping Review. Rwanda Med. J. 2023, 80, 88–94. [Google Scholar] [CrossRef]
- Chaiwanichsiri, D.; Wangno, W.; Kitisomprayoonkul, W.; Bhidayasiri, R. Treadmill Training with Music Cueing: A New Approach for Parkinson’s Gait Facilitation. Asian Biomed. 2011, 5, 649–654. [Google Scholar]
- Sayed, H. Visual Cues Training on Parkinsonian Gait: A Randomized Controlled Study. Egypt. J. Neurol. Psychiatry Neurosurg. 2013, 50, 331–337. [Google Scholar]
- Peters: Joanna Briggs Institute Reviewer’s Manual, JBI—Google Scholar. Available online: https://scholar-google-com.ezproxy.unibo.it/scholar_lookup?hl=en&publication_year=2020&author=MDJ+Peters&author=C+Godfrey&author=P+McInerney&author=Z+Munn&author=AC+Tricco&author=H+Khalil&title=Joanna+Briggs+Institute+Reviewer%27s+Manual%2C+JBI (accessed on 9 June 2022).
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, R. Kinematic and Plantar Pressure Analysis in Strumpell-Lorrain Disease: A Case Report. Brain Disord. 2023, 11, 100097. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Horak, F.B.; Van Tran, K.; Nutt, J.G. An Alternative Clinical Postural Stability Test for Patients with Parkinson’s Disease. J. Neurol. 2006, 253, 1404–1413. [Google Scholar] [CrossRef]
- Chomiak, T.; Pereira, F.V.; Hu, B. The Single-Leg-Stance Test in Parkinson’s Disease. J. Clin. Med. Res. 2014, 7, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Fitzpatrick, R.; Peto, V.; Greenhall, R.; Hyman, N. The Parkinson’s Disease Questionnaire (PDQ-39): Development and Validation of a Parkinson’s Disease Summary Index Score. Age Ageing 1997, 26, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Kwok, J.Y.Y.; Choi, E.P.H.; Lee, J.J.; Lok, K.Y.W.; Kwan, J.C.Y.; Mok, V.C.T.; Auyeung, M. Effects of Mindfulness Yoga Versus Conventional Physical Exercises on Symptom Experiences and Health-Related Quality of Life in People with Parkinson’s Disease: The Potential Mediating Roles of Anxiety and Depression. Ann. Behav. Med. 2022, 56, 1068–1081. [Google Scholar] [CrossRef]
- Tedeschi, R. Reevaluating the Drucebo Effect: Implications for Physiotherapy Practice. J. Psychosoc. Rehabil. Ment. Health 2024, 11, 391–393. [Google Scholar] [CrossRef]
Author | Study Design | Participants | Outcome Measures | Interventions | Baseline Outcomes | Follow-Up Results |
---|---|---|---|---|---|---|
Nieuwboer et al., 2007 [29] | RCT | Early intervention (n = 76), age: 67.5 (61.5–72), M/F: 48/28, H&Y: 2.5 (2.5–3) | Primary outcomes: PG score, walking speed | 3-week “home cueing” program using a cueing prototype device, followed by 3 weeks without training | PG score (0–20): 6.0 (4.0–8.0), walking speed (m/s): 0.86 (0.73–0.98) | PG score (0–20): 4.0 (3.0–7.0), walking speed (m/s): 0.94 (0.76–1.1) |
Late intervention (n = 77), age: 69 (62.5–73), M/F: 40/37, H&Y: 3 (2.5–3) | Secondary outcomes: step length, frequency | Patients tested all cueing modes (visual, auditory, somatosensory), trained in their preferred mode | Step length (m): 0.51 (0.44–0.58), step frequency (steps/m): 101.6 (92.5–110) | Step length (m): 0.55 (0.48–0.60), step frequency (steps/m): 104.2 (97.2–112) | ||
Chaiwanichsiri et al., 2011 [36] | RCT | Group A: treadmill + music (n = 10), Age: 67.1 ± 4.0, M/F: 10/0, H&Y: 2.35 ± 0.36 | Step length, frequency, walking speed, TUG, 6 min walk | Stretching + 20 min treadmill with music cues 3x/week for 4 weeks, then 4 weeks home program | Step length (cm): 62.2 ± 7.3, walking speed (m/s): 1.24 ± 0.20 | Step length (cm): 69.6 ± 5.8, walking speed (m/s): 1.35 ± 0.09 |
Group B: treadmill only (n = 10), age: 67.9 ± 6.3, M/F: 10/0, H&Y: 2.5 ± 0.5 | 6 m walk time, 6 min walk distance | 20 min treadmill without cues, 3x/week for 4 weeks, then 4-week home program | 6 m walk time (s): 5.2 ± 0.97, walking speed (m/s): 1.18 ± 0.21 | 6 m walk time (s): 4.8 ± 0.69, walking speed (m/s): 1.26 ± 0.17 | ||
Sayed et al., 2013 [37] | RCT | Intervention (n = 14), age: 63.45 ± 4.85, M/F: 14/0, H&Y (on): 2.45 ± 0.43 | TUG, step length, speed, hip/knee flexion | Physical therapy program 3x/week for 6 weeks with 10 m walk using visual cues | TUG (s): 13.65 ± 2.42, step length (m): 0.46 ± 0.2, speed (m/s): 0.81 ± 0.12 | TUG (s): 16.15 ± 3.98, step length (m): 0.42 ± 0.1, speed (m/s): 0.76 ± 0.18 |
Control (n = 14), age: 61.6 ± 5.08, M/F: 14/0, H&Y (on): 2.48 ± 0.47 | Max flexion angle (hip, knee, ankle) | Same physical therapy program without visual cues | Hip flexion (°): 32.1 ± 4.12, knee flexion (°): 36.87 ± 5.97 | Hip flexion (°): 28.19 ± 5.41, knee flexion (°): 32.4 ± 5.63 | ||
De Icco et al., 2015 [32] | RCT | Acoustic cues (n = 11), age: 78.1 ± 6.1, M/F: 7/4, UPDRS-III: 32.1 ± 9.8 | Step count, step duration, speed | 20 min gait training sessions with acoustic or visual cues, 5x/week for 4 weeks | Step count: 7.2 ± 3.3, speed (m/s): 0.63 ± 0.22 | Step count: 6.2 ± 1.7, Speed (m/s): 0.77 ± 0.3 |
Visual cues (n = 11), age: 73.2 ± 6.9, M/F: 5/6, UPDRS-III: 29.1 ± 7.9 | FIM, UPDRS-III | Floor markers for visual guidance, avoiding stepping on lines | Step duration (ms): 1362.9 ± 216.6, swing phase (%): 27.6 ± 3.5 | Step duration (ms): 1332.9 ± 263.1, swing phase (%): 36.6 ± 3.5 | ||
Calabrò et al., 2019 [33] | RCT | RAS-Treadmill (n = 25), Age: 70 ± 8, M/F: 11/9, H&Y (on): 3 ± 1 | Primary: FGA, Secondary: BBS, UPDRS | Daily 45 min treadmill training with rhythmic auditory stimuli, 5x/week for 8 weeks | 10MWT (s): 7.5 ± 5, UPDRS: 29 ± 3 | 10MWT (s): 6.9 ± 5, UPDRS: 21 ± 5 |
Non-RAS-treadmill (n = 25), age: 73 ± 8, M/F: 14/6, H&Y (on): 3 ± 1 | FGA, TUG | 30 min treadmill training without auditory stimuli | FES (score): 34 ± 9, FGA (score): 18 ± 2 | FES (score): 28 ± 9, FGA (score): 22 ± 2 | ||
Capato et al., 2020 [34] | RCT | RAS-supported (n = 56), age: 74 ± 8, M/F: 27/29, H&Y (on): 2.39 ± 0.79 | Primary: mini BESTest, Secondary: BBS | 5-week balance training with rhythmic auditory stimuli, 2x/week | Mini BESTest: 14.8 (12.9; 16.6), BBS: 38.9 (35.6; 42.3) | Mini BESTest: 21.1 (20.2; 22.0), BBS: 45.6 (44.2; 46.9) |
Regular (n = 50), age: 67 ± 13, M/F: 32/18, H&Y (on): 2.46 ± 0.91 | Retropulsion, push/release, falls efficacy | Routine balance exercises without auditory cues | Retropulsion test: 2.3 (1.9; 2.7), FES: 31.5 (26.8; 36.2) | Retropulsion test: 1.2 (1.0; 1.4), FES: 27.8 (22.1; 29.3) |
Author | Year | PEDro Score | RoB-2 Domains |
---|---|---|---|
Randomization | |||
Nieuwboer et al. [30] | 2007 | 07-ott | Low risk |
Chaiwanichsiri et al. [37] | 2011 | 06-ott | Some concerns |
Sayed et al. [38] | 2013 | 04-ott | High risk |
De Icco et al. [33] | 2015 | 04-ott | Some concerns |
Calabrò et al. [34] | 2019 | 08-ott | Low risk |
Capato et al. | 2020 | 08-ott | Low risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giorgi, F.; Donati, D.; Tedeschi, R. Cueing Interventions for Gait and Balance in Parkinson’s Disease: A Scoping Review of Current Evidence. Appl. Sci. 2024, 14, 11781. https://doi.org/10.3390/app142411781
Giorgi F, Donati D, Tedeschi R. Cueing Interventions for Gait and Balance in Parkinson’s Disease: A Scoping Review of Current Evidence. Applied Sciences. 2024; 14(24):11781. https://doi.org/10.3390/app142411781
Chicago/Turabian StyleGiorgi, Federica, Danilo Donati, and Roberto Tedeschi. 2024. "Cueing Interventions for Gait and Balance in Parkinson’s Disease: A Scoping Review of Current Evidence" Applied Sciences 14, no. 24: 11781. https://doi.org/10.3390/app142411781
APA StyleGiorgi, F., Donati, D., & Tedeschi, R. (2024). Cueing Interventions for Gait and Balance in Parkinson’s Disease: A Scoping Review of Current Evidence. Applied Sciences, 14(24), 11781. https://doi.org/10.3390/app142411781