Model Decomposition-Based Approach to Optimizing the Efficiency of Wireless Power Transfer Inside a Metal Enclosure
<p>A schematic diagram of the cavity-based (closet-based) WPT system under study.</p> "> Figure 2
<p>The Ansys HFSS model of the steel closet with the Rx antenna holder.</p> "> Figure 3
<p>The HFSS model of the receiving antenna: top view (<b>a</b>), bottom view (<b>b</b>).</p> "> Figure 4
<p>The HFSS model of the transmitting antenna: top view (<b>a</b>) and bottom view (<b>b</b>).</p> "> Figure 5
<p>The Ansys HFSS model constructed to determine the generalized scattering matrix relating the waveguide mode amplitudes and phases at both ends (ports) of a waveguide section containing a dipole antenna model and the amplitude and phase of the dipole feed line’s TEM wave.</p> "> Figure 6
<p>The Ansys HFSS model for finding the generalized scattering matrix relating the waveguide mode amplitudes and phases at both ends of a waveguide section containing the Yagi-like antenna’s director (<b>a</b>) and the same model with a port and the relevant mode integration lines highlighted (<b>b</b>).</p> "> Figure 7
<p>The coupling coefficients between the TEM line mode and the three power-carrying waveguide modes (TE<sub>01</sub>, TM<sub>21</sub>, and TE<sub>21</sub>) against the transmitting dipole length, calculated at <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>feed</mi> </mrow> </msub> <mo>=</mo> <mn>70</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mrow> <mi>dip</mi> <mo>-</mo> <mi>dir</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>145</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> without the PEC terminating plate behind the dipole antenna. The waveguide modes propagating in the desired direction are indicated by (+), whereas those propagating in the opposite direction are indicated by (−).</p> "> Figure 8
<p>The coupling coefficients between the TEM line mode and the three power-carrying waveguide modes (TE<sub>01</sub>, TM<sub>21</sub>, and TE<sub>21</sub>) (<b>a</b>) and their phases relative to that of the incident TEM wave against the transmitting dipole length (<b>b</b>), calculated for a waveguide section terminated into a conducting plate at the rear end containing a dipole antenna with <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>feed</mi> </mrow> </msub> <mo>=</mo> <mn>70</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 9
<p>The coupling coefficients between the TEM line mode and the three power-carrying waveguide modes (TE<sub>01</sub>, TM<sub>21</sub>, and TE<sub>21</sub>) against the transmitting dipole length, calculated at <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>feed</mi> </mrow> </msub> <mo>=</mo> <mn>70</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mrow> <mi>dip</mi> <mo>-</mo> <mi>dir</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>145</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 10
<p>The coupling coefficients between the TEM mode of the Yagi-like antenna and waveguide modes TE<sub>01</sub>, TM<sub>21</sub>, and TE<sub>21</sub> against the transmitting dipole length, calculated at <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>feed</mi> </mrow> </msub> <mo>=</mo> <mn>70</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mrow> <mi>dip</mi> <mo>-</mo> <mi>dir</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>145</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> (<b>a</b>) and transmitting antenna feed line length, calculated at <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>dipole</mi> </mrow> </msub> <mo>=</mo> <mn>62</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mrow> <mrow> <mi>dip</mi> <mo>-</mo> <mi>dir</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>130</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> (<b>b</b>) with a conducting plate placed behind the antenna.</p> "> Figure 11
<p>The absolute values of resonant cavity-based WPT system scattering parameters (TEM mode parameters) (<b>a</b>) and their phases (<b>b</b>) against frequency, calculated using the decomposition approach and directly using Ansys HFSS.</p> "> Figure 12
<p>The PTE as a function of the separation distance between the Tx and Rx antennas, calculated for the optimal values of the Yagi-like and dipole antenna parameters (see <a href="#applsci-14-11733-t003" class="html-table">Table 3</a> and <a href="#applsci-14-11733-t004" class="html-table">Table 4</a>) (<b>a</b>) and parameter values giving a more extended high PTE region than the optimal one, but at the cost of a sharp dip almost in the middle of the region and WPT model with a hypothetical mode phase shifter optimized to yield the widest high PTE region (<b>b</b>).</p> "> Figure 13
<p>Experimental setup involving a carbon steel closet used as a resonant cavity in the WPT system under study: antenna-based WPT system inside the metal closet (<b>a</b>), experimental setup involving the TX and RX antennas, the signal generator operating at 865.5 MHz, and the power meter used to measure the received power (<b>b</b>).</p> "> Figure 14
<p>The measured PCE of the BAT6804 Schottky diode-based voltage doubler RF-DC converter as a function of the input RF power level in dBm (<b>a</b>) and as function of the frequency at different fixed-input RF power levels (<b>b</b>).</p> "> Figure 15
<p>The calculated and measured PTE against the separation between the receiving and transmitting antennas <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 16
<p>The measured PTE against the frequency for the Rx antenna located at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 17
<p>The calculated and measured PTE against the separation between the receiving and transmitting antennas at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 18
<p>The measured PTE against the frequency for the Rx antenna located at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 19
<p>The calculated and measured PTE against the separation between the receiving and transmitting antennas at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>80</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 20
<p>The measured PTE against the frequency for the Rx antenna located at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>80</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 21
<p>The calculated and measured PTE against the separation between the receiving and transmitting antennas at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 22
<p>The measured PTE against the frequency for the Rx antenna located at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 23
<p>The calculated and measured PTE against the separation between the receiving and transmitting antennas at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 24
<p>The measured PTE against the frequency for the Rx antenna located at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 25
<p>The calculated and measured PTE against the separation between the receiving and transmitting antennas at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>80</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 26
<p>The measured PTE against the frequency for the Rx antenna located at <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>40</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>RX</mi> </mrow> </msub> <mo>=</mo> <mn>80</mn> <mrow> <mo> </mo> <mi>mm</mi> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
- Ascertain the mechanisms responsible for the increase in the size of the high PTE region, by performing an in-depth analysis based on the structure decomposition method. Specifically, this question is answered by examining the interaction of sub-models involving a dipole antenna and director with power-carrying waveguide modes (ensuring the energy transfer from the Tx end to the Rx end). As will be shown in the remainder of this paper, the observed elongation of the high PTE region is due to changes in the power-carrying modes’ phase resulting from the modes’ interaction with the director strip, which essentially acts as a primitive phase shifter.
- Apply the model decomposition method to the WPT system at hand, validate it, and assess its accuracy by comparing the results obtained using this method with those retrieved by performing the full-wave analysis of the original WPT systems model (without decomposing it) for a large number of different parameter values.
- Experimentally verify the calculated results by making measurements at different horizontal and vertical positions of the receiving antenna inside the closet. Two measurement scenarios are examined: with and without the RF-DC converter.
- Asses the sensitivity of the cavity-based WPT system’s PTE to variations in the operating frequency by performing frequency sweeps for several Rx antenna horizontal and vertical positions.
2. Theoretical Analysis of Cavity-Based WPT Systems
2.1. WPT Model Decomposition
2.2. Analysis of the WPT System’s Sub-Models
- A mode must have a relatively large electric field component along the dipole for the current to be induced in it;
- The electric field intensity must be asymmetric about the waveguide central plane, which is perpendicular to the dipole antenna plane and runs parallel with the waveguide;
- The electric field intensity must be large at the dipole location—the dipole must be located within an electric field maximum, or two maxima with opposite field directions, and the same field strength must occur at the dipole arms.
3. WPT Model Decomposition Approach Validation and Optimization
- Tx antenna’s reflector, feed line, and dipole lengths (Tx antenna’s sub-model parameters);
- Rx antenna’s reflector, feed line, and dipole lengths (Rx antenna’s sub-model parameters);
- Director length (director’s sub-model parameters);
- Separation distance between the Tx and Rx antennas;
- Distance between the Rx antenna’s dipole and the director.
4. Experimental Verification and Discussion
4.1. Measurements of the WPT System’s PTE
4.2. Measurement Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of Wireless Sensor Networks: An Up-to-Date Survey. Appl. Syst. Innov. 2020, 3, 14. [Google Scholar] [CrossRef]
- Lin, R.; Kim, H.J.; Achavananthadith, S.; Kurt, S.A.; Tan, S.C.C.; Yao, H.; Tee, B.C.K.; Lee, J.K.W.; Ho, J.S. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 2020, 11, 444. [Google Scholar] [CrossRef]
- Bootsman, R.; Markopoulos, P.; Qi, Q.; Wang, Q.; Timmermans, A.A. Wearable technology for posture monitoring at the workplace. Int. J. Hum.-Comput. Stud. 2019, 132, 99–111. [Google Scholar] [CrossRef]
- Murphy, M.; Bergquist, F.; Hagström, B.; Hernández, N.; Johansson, D.; Ohlsson, F.; Sandsjö, L.; Wipenmyr, J.; Malmgren, K. An upper body garment with integrated sensors for people with neurological disorders—Early development and evaluation. BMC Biomed. Eng. 2019, 1, 3. [Google Scholar] [CrossRef]
- Chang, C.W.; Riehl, P.; Lin, J. Alignment-Free Wireless Charging of Smart Garments with Embroidered Coils. Sensors 2021, 21, 7372. [Google Scholar] [CrossRef]
- Ancans, A.; Greitans, M.; Cacurs, R.; Banga, B.; Rozentals, A. Wearable Sensor Clothing for Body Movement Measurement during Physical Activities in Healthcare. Sensors 2021, 21, 2068. [Google Scholar] [CrossRef] [PubMed]
- Rahimizadeh, S.; Korhummel, S.; Kaslon, B.; Popovic, Z. Scalable adaptive wireless powering of multiple electronic devices in an over-moded cavity. In Proceedings of the 2013 IEEE Wireless Power Transfer (WPT); Perugia, Italy, 15–16 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 84–87. [Google Scholar] [CrossRef]
- Kusnins, R.; Pikulins, D.; Eidaks, J.; Tjukovs, S.; Aboltins, A. Study on a Metal Closet Based Wireless Power Transfer System for Smart Suit Charging. In Proceedings of the 2023 Workshop on Microwave Theory and Technology in Wireless Communications (MTTW), Riga, Latvia, 4–6 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 56–61. [Google Scholar] [CrossRef]
- Rehman, M.; Nallagownden, N.; Baharudin, Z. A Review of Wireless Power Transfer System Using Inductive and Resonant Coupling. J. Ind. Technol. 2018, 26, 1–24. [Google Scholar] [CrossRef]
- Mohammad, M.; Onar, O.C.; Su, G.J.; Pries, J.; Galigekere, V.P.; Anwar, S.; Asa, E.; Wilkins, J.; Wiles, R.; White, C.P.; et al. Bidirectional LCC–LCC-Compensated 20-kW Wireless Power Transfer System for Medium-Duty Vehicle Charging. IEEE Trans. Transp. Electrif. 2021, 7, 1205–1218. [Google Scholar] [CrossRef]
- Van Mulders, J.; Delabie, D.; Lecluyse, C.; Buyle, C.; Callebaut, G.; Van der Perre, L.; De Strycker, L. Wireless Power Transfer: Systems, Circuits, Standards, and Use Cases. Sensors 2022, 22, 5573. [Google Scholar] [CrossRef]
- Valenta, C.R.; Durgin, G.D. Harvesting Wireless Power: Survey of Energy-Harvester Conversion Efficiency in Far-Field, Wireless Power Transfer Systems. IEEE Microw. Mag. 2014, 15, 108–120. [Google Scholar] [CrossRef]
- Hidalgo-Leon, R.; Urquizo, J.; Silva, C.E.; Silva-Leon, J.; Wu, J.; Singh, P.; Soriano, G. Powering nodes of wireless sensor networks with energy harvesters for intelligent buildings: A review. Energy Rep. 2022, 8, 3809–3826. [Google Scholar] [CrossRef]
- Park, H.S.; Hong, S.K. A performance predictor of beamforming versus time-reversal based far-field wireless power transfer from linear array. Sci. Rep. 2021, 11, 22743:1–22743:9. [Google Scholar] [CrossRef]
- Lopezf, J.; Tsay, J.; Guzman, B.A.; Mayeda, J.; Lie, D.Y.C. Phased arrays in wireless power transfer. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–19 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5–18. [Google Scholar] [CrossRef]
- Chabalko, M.J.; Sample, A.P. Resonant cavity mode enabled wireless power transfer. Appl. Phys. Lett. 2014, 105, 243902. [Google Scholar] [CrossRef]
- Chabalko, M.J.; Sample, A.P. Electric field coupling to short dipole receivers in cavity mode enabled wireless power transfer. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 410–411. [Google Scholar] [CrossRef]
- Haus, H.A.; Huang, W. Coupled-mode theory. Proc. IEEE 1991, 79, 1505–1518. [Google Scholar] [CrossRef]
- Sasatani, T.; Chabalko, M.; Kawahara, Y.; Sample, A. Geometry-Based Circuit Modeling of Quasi-Static Cavity Resonators for Wireless Power Transfer. IEEE Open J. Power Electron. 2022, 3, 382–390. [Google Scholar] [CrossRef]
- Chabalko, M.J.; Sample, A.P. Three-Dimensional Charging via Multimode Resonant Cavity Enabled Wireless Power Transfer. IEEE Trans. Power Electron. 2015, 30, 6163–6173. [Google Scholar] [CrossRef]
- Mei, H.; Thackston, K.A.; Bercich, R.A.; Jefferys, J.G.R.; Irazoqui, P.P. Cavity Resonator Wireless Power Transfer System for Freely Moving Animal Experiments. IEEE Trans. Biomed. Eng. 2017, 64, 775–785. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Lu, M.A. Retro-reflective Scheme for Wireless Power transmission in Fully Enclosed Environments. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1465–1466. [Google Scholar] [CrossRef]
- Chabalko, M.J.; Shahmohammadi, M.; Sample, A.P. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer. PLoS ONE 2017, 12, e0169045. [Google Scholar] [CrossRef] [PubMed]
- Sasatani, T.; Yang, C.J.; Chabalko, M.J.; Kawahara, Y.; Sample, A.P. Room-Wide Wireless Charging and Load-Modulation Communication via Quasistatic Cavity Resonance. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–23. [Google Scholar] [CrossRef]
- Sasatani, T.; Chabalko, M.J.; Kawahara, Y.; Sample, A.P. Multimode Quasistatic Cavity Resonators for Wireless Power Transfer. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2746–2749. [Google Scholar] [CrossRef]
- Sasatani, T.; Sample, A.P.; Kawahara, Y. Room-scale magnetoquasistatic wireless power transfer using a cavity-based multimode resonator. Nat. Electron. 2021, 4, 689–697. [Google Scholar] [CrossRef]
- Abdelraheem, A.; Sinanis, M.D.; Peroulis, D. A New Wireless Power Transmission (WPT) System for Powering Wireless Sensor Networks (WSNs) in Cavity-Based Equipment. In Proceedings of the 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 8–9 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Korhummel, S.; Rosen, A.; Popovic, Z. Over-Moded Cavity for Multiple-Electronic-Device Wireless Charging. IEEE Trans. Microw. Theory Tech. 2014, 62, 1074–1079. [Google Scholar] [CrossRef]
- Takano, I.; Furusu, D.; Watanabe, Y.; Tamura, M. Study on Cavity Resonator wireless power transfer to sensors in an enclosed space with scatterers. In Proceedings of the 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 19–21 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 79–82. [Google Scholar] [CrossRef]
- Akai, S.; Saeki, H.; Tamura, M. Power Supply to Multiple Sensors and Leakage Field Analysis Using Cavity Resonance-Enabled Wireless Power Transfer. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium, Denver, CO, USA, 19–24 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 271–274. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, Q.; Yang, Z.; Bian, R.; Zhao, D.; Wang, B.Z. Wall-Meshed Cavity Resonator-Based Wireless Power Transfer Without Blocking Wireless Communications with Outside World. IEEE Trans. Ind. Electron. 2022, 69, 7481–7490. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, Q.; Zhao, D.; Wang, B.Z. Three-Dimensional Wireless Power Transfer Based on Meshed Cavity Resonator. In Proceedings of the 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 17–20 May 2020; IEEE: Piscataway, NJ, USA, 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, K.Q.; Li, D.J. Electromagnetic Theory for Microwaves and Optoelectronics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 2nd ed.; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Hung, C.L.; Yeh, Y.S. The propagation constants of higher order modes in coaxial waveguides with finite conductivity. Int. J. Infrared Millim. Waves 2005, 26, 29–39. [Google Scholar] [CrossRef]
- Jiao, C.Q.; Zheng, N.; Luo, J.R. A comparison of the attenuation of high-order mode in coaxial waveguide due to inner and outer conductor losses. J. Infrared Millim. Terahertz Waves 2010, 31, 858–865. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Migdalas, A.; Pardalos, P.M.; Värbrand, P. From Local to Global Optimization; Springer: Berlin, Germany, 2001. [Google Scholar]
- Zelinka, I.; Snášel, V.; Abraham, A. Handbook of Optimization; Springer: Berlin, Germany, 2013. [Google Scholar]
- Simon, D. Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches to Computer Intelligence; John Wiley & Sons Inc.: New York, NY, USA, 2013. [Google Scholar]
Mode | Attenuation Constant [s−1] | Phase Constant [s−1] | Mode | Attenuation Constant [s−1] | Phase Constant [s−1] |
---|---|---|---|---|---|
TE10 | 0.0212 | 16.9227 | TE21 | 0.0747 | 6.2534 |
TE01 | 0.0279 | 14.5773 | TE30 | 7.7375 | 0.0968 |
TM11 | 0.0567 | 13.0302 | TE02 | 11.7587 | 0.0900 |
TE11 | 0.0399 | 13.0133 | TE32 | 13.2780 | 0.0911 |
TE20 | 0.0404 | 12.5117 | TE41 | 13.3381 | 0.0327 |
TM21 | 0.1477 | 6.3300 | TE22 | 13.4590 | 0.0973 |
Parameter (Case 1) | Value | Parameter (Case 2) | Value |
---|---|---|---|
Feed line length (TX) | 75 mm | Feed line length (TX) | 75 mm |
Dipole length (TX) | 70 mm | Dipole length (TX) | 90 mm |
Director length (TX) | 160 mm | Director length (TX) | 140 mm |
Director-to-dipole separation (TX) | 195 mm | Director-to-dipole separation (TX) | 195 mm |
Feed line length (RX) | 70 mm | Feed line length (RX) | 70 mm |
Dipole length (RX) | 65 mm | Dipole length (RX) | 65 mm |
Top-to-TX distance | 34 mm | Top-to-TX distance | 40 mm |
Parameter | Value | Parameter | Value |
---|---|---|---|
Feed line length | 70 mm | Dipole width | 5 mm |
Feed line width | 5 mm | Substrate width | 180 mm |
Reflector width | 20 mm | Substrate length | 280 mm |
Reflector length | 170 mm | Dipole length | 63 mm |
Director width | 5 mm | Director length | 160 mm |
Director-to-dipole separation | 180 mm |
Parameter | Value | Parameter | Value |
---|---|---|---|
Feed line length | 70 mm | Dipole width | 5 mm |
Feed line width | 5 mm | Substrate width | 180 mm |
Reflector width | 20 mm | Substrate length | 120 mm |
Reflector length | 160 mm | Dipole length | 64 mm |
Parameter | Value | Parameter | Value |
---|---|---|---|
Feed line length | 75 mm | Dipole width | 5 mm |
Feed line width | 5 mm | Substrate width | 180 mm |
Reflector width | 20 mm | Substrate length | 280 mm |
Reflector length | 170 mm | Dipole length | 64.4 mm |
Director width | 5 mm | Director length | 160 mm |
Director-to-dipole separation | 190 mm |
Parameter | Value | Parameter | Value |
---|---|---|---|
Feed line length | 85 mm | Dipole width | 5 mm |
Feed line width | 5 mm | Substrate width | 180 mm |
Reflector width | 20 mm | Substrate length | 120 mm |
Reflector length | 160 mm | Dipole length | 65 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusnins, R.; Tjukovs, S.; Eidaks, J.; Gailis, K.; Pikulins, D. Model Decomposition-Based Approach to Optimizing the Efficiency of Wireless Power Transfer Inside a Metal Enclosure. Appl. Sci. 2024, 14, 11733. https://doi.org/10.3390/app142411733
Kusnins R, Tjukovs S, Eidaks J, Gailis K, Pikulins D. Model Decomposition-Based Approach to Optimizing the Efficiency of Wireless Power Transfer Inside a Metal Enclosure. Applied Sciences. 2024; 14(24):11733. https://doi.org/10.3390/app142411733
Chicago/Turabian StyleKusnins, Romans, Sergejs Tjukovs, Janis Eidaks, Kristaps Gailis, and Dmitrijs Pikulins. 2024. "Model Decomposition-Based Approach to Optimizing the Efficiency of Wireless Power Transfer Inside a Metal Enclosure" Applied Sciences 14, no. 24: 11733. https://doi.org/10.3390/app142411733
APA StyleKusnins, R., Tjukovs, S., Eidaks, J., Gailis, K., & Pikulins, D. (2024). Model Decomposition-Based Approach to Optimizing the Efficiency of Wireless Power Transfer Inside a Metal Enclosure. Applied Sciences, 14(24), 11733. https://doi.org/10.3390/app142411733