Spectral Data-Driven Prediction of Soil Properties Using LSTM-CNN-Attention Model
<p>Sampling points of European Union.</p> "> Figure 2
<p>Initial absorbance spectra and preprocessed spectral curves for mineral soil samples from the LUCAS 2015 topsoil database: (<b>a</b>) shows the original spectra, and (<b>b</b>) displays the preprocessed spectra. Both figures present the 5th, 16th, 50th, 84th, and 95th percentiles to illustrate the variability within the dataset.</p> "> Figure 3
<p>Diagram of the LSTM model structure featuring the forget gate, input gate, and output gate.</p> "> Figure 4
<p>Self-attention mechanism.</p> "> Figure 5
<p>The framework of the proposed LSTM-CNN-Attention model.</p> "> Figure 6
<p>The flowchart of soil property prediction with the LSTM-CNN-Attention method.</p> "> Figure 7
<p>KDE plots of soil properties for the total dataset, training set, and test set: (<b>a</b>) OC, (<b>b</b>) N, (<b>c</b>) CaCO<sub>3</sub>, and (<b>d</b>) pH(H<sub>2</sub>O).</p> "> Figure 8
<p>KDE plots of PCA-transformed spectral data for the total dataset, training set, and test set: (<b>a</b>) PC1 and (<b>b</b>) PC2.</p> "> Figure 9
<p>Actual vs. predicted values of the proposed framework: (<b>a</b>) OC, (<b>b</b>) N, (<b>c</b>) CaCO<sub>3</sub>, and (<b>d</b>) pH(H<sub>2</sub>O).</p> "> Figure 10
<p>Residual comparison: (<b>a</b>) OC, (<b>b</b>) N, (<b>c</b>) CaCO<sub>3</sub>, and (<b>d</b>) pH(H<sub>2</sub>O).</p> "> Figure 11
<p>Line charts of (<b>a</b>) R<sup>2</sup> and (<b>b</b>) RPD for the proposed and other models.</p> ">
Abstract
:1. Introduction
- A novel LSTM-CNN-Attention model is developed for predicting soil properties from hyperspectral data;
- The model integrates temporal and spatial feature extraction with attention mechanisms to improve predictive accuracy;
- The proposed model outperforms not only traditional machine learning models but also previous deep learning approaches.
2. Materials and Methods
2.1. LUCAS Soil Database
2.2. Splitting of Soil Samples
2.3. Spectra Measurement
2.4. Data Preprocessing
2.5. Model and Methodology
2.5.1. Long Short-Term Memory Neural Network (LSTM)
- The forget gate determines which parts of the previous memory cell state should be discarded.
- The input gate controls the incorporation of new information into the cell state.
- The output gate determines which portion of the cell state is passed as the hidden state.
2.5.2. One-Dimensional Convolutional Neural Network (1D-CNN)
2.5.3. Self-Attention Mechanism
- Projection of Inputs: The input data matrix () is first transformed into the following three separate representations:
- Similarity Calculation: The similarity between Query and Key is measured using the following scaled dot product:
- Attention Weights: The computed similarity scores are passed through a softmax function to transform them into the following probability distribution:
- Weighted Aggregation: The attention weights are applied to the Value matrix to compute the following final attention-enhanced output:
2.5.4. Proposed Model and Prediction Workflow
2.6. Model Evaluation
2.7. Experimental Setup
3. Results
3.1. Descriptive Statistical Analysis
3.2. Impact of Spectrum Preprocessing on Model Performance
3.3. Evaluation Results of LSTM-CNN-Attention
3.4. Comparison of Performance with Other Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Guan, K.; Zhang, C.; Lee, D.; Margenot, A.J.; Ge, Y.; Peng, J.; Zhou, W.; Zhou, Q.; Huang, Y. Using Soil Library Hyperspectral Reflectance and Machine Learning to Predict Soil Organic Carbon: Assessing Potential of Airborne and Spaceborne Optical Soil Sensing. Remote Sens. Environ. 2022, 271, 112914. [Google Scholar] [CrossRef]
- Denton, O.; Aduramigba-Modupe, V.; Ojo, A.; Adeoyolanu, O.; Are, K.; Adelana, A.; Oyedele, A.; Adetayo, A.; Oke, A. Assessment of Spatial Variability and Mapping of Soil Properties for Sustainable Agricultural Production Using Geographic Information System Techniques (GIS). Cogent Food Agric. 2017, 3, 1279366. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, B. Prediction of Soil Salinity with Soil-Reflected Spectra: A Comparison of Two Regression Methods. Sci. Rep. 2019, 9, 5067. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, T.; Liu, J.; Lin, Z.; Li, S.; Wang, R.; Ge, Y. Soil pH Value, Organic Matter and Macronutrients Contents Prediction Using Optical Diffuse Reflectance Spectroscopy. Comput. Electron. Agric. 2015, 111, 69–77. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Ge, Y.; Gomez, C.; Guerrero, C.; Peng, Y.; Ramirez-Lopez, L.; et al. Diffuse Reflectance Spectroscopy for Estimating Soil Properties: A Technology for the 21st Century. Eur. J. Soil Sci. 2022, 73, e13271. [Google Scholar] [CrossRef]
- Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using Vis-NIR Spectra. Sensors 2019, 19, 263. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital Mapping of GlobalSoilMap Soil Properties at a Broad Scale: A Review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Seidel, M.; Vohland, M.; Greenberg, I.; Ludwig, B.; Ortner, M.; Thiele-Bruhn, S.; Hutengs, C. Soil Moisture Effects on Predictive VNIR and MIR Modeling of Soil Organic Carbon and Clay Content. Geoderma 2022, 427, 116103. [Google Scholar] [CrossRef]
- Goydaragh, M.G.; Taghizadeh-Mehrjardi, R.; Jafarzadeh, A.A.; Triantafilis, J.; Lado, M. Using Environmental Variables and Fourier Transform Infrared Spectroscopy to Predict Soil Organic Carbon. CATENA 2021, 202, 105280. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, D.; Wang, J.; Triantafilis, J. Soil Organic Carbon (SOC) Prediction in Australian Sugarcane Fields Using Vis–NIR Spectroscopy with Different Model Setting Approaches. Geoderma Reg. 2022, 30, e00566. [Google Scholar] [CrossRef]
- Ribeiro, S.G.; Teixeira, A.D.S.; De Oliveira, M.R.R.; Costa, M.C.G.; Araújo, I.C.D.S.; Moreira, L.C.J.; Lopes, F.B. Soil Organic Carbon Content Prediction Using Soil-Reflected Spectra: A Comparison of Two Regression Methods. Remote Sens. 2021, 13, 4752. [Google Scholar] [CrossRef]
- Dotto, A.C.; Dalmolin, R.S.D.; Ten Caten, A.; Grunwald, S. A Systematic Study on the Application of Scatter-Corrective and Spectral-Derivative Preprocessing for Multivariate Prediction of Soil Organic Carbon by Vis-NIR Spectra. Geoderma 2018, 314, 262–274. [Google Scholar] [CrossRef]
- Tavakoli, H.; Correa, J.; Sabetizade, M.; Vogel, S. Predicting Key Soil Properties from Vis-NIR Spectra by Applying Dual-Wavelength Indices Transformations and Stacking Machine Learning Approaches. Soil Tillage Res. 2023, 229, 105684. [Google Scholar] [CrossRef]
- Xie, S.; Li, Y.; Wang, X.; Liu, Z.; Ma, K.; Ding, L. Research on Estimation Models of the Spectral Characteristics of Soil Organic Matter Based on the Soil Particle Size. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2021, 260, 119963. [Google Scholar] [CrossRef] [PubMed]
- Vohland, M.; Besold, J.; Hill, J.; Fründ, H.C. Comparing Different Multivariate Calibration Methods for the Determination of Soil Organic Carbon Pools with Visible to near Infrared Spectroscopy. Geoderma 2011, 166, 198–205. [Google Scholar] [CrossRef]
- Knox, N.; Grunwald, S.; McDowell, M.; Bruland, G.; Myers, D.; Harris, W. Modelling Soil Carbon Fractions with Visible Near-Infrared (VNIR) and Mid-Infrared (MIR) Spectroscopy. Geoderma 2015, 239–240, 229–239. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z. Quantitative Analysis Modeling of Infrared Spectroscopy Based on Ensemble Convolutional Neural Networks. Chemom. Intell. Lab. Syst. 2018, 181, 1–10. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Wang, R.; Wang, H. Combination of Convolutional Neural Networks and Recurrent Neural Networks for Predicting Soil Properties Using Vis–NIR Spectroscopy. Geoderma 2020, 380, 114616. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine Learning and Soil Sciences: A Review Aided by Machine Learning Tools. Soil 2020, 6, 35–52. [Google Scholar] [CrossRef]
- De Santana, F.B.; Otani, S.K.; De Souza, A.M.; Poppi, R.J. Comparison of PLS and SVM Models for Soil Organic Matter and Particle Size Using Vis-NIR Spectral Libraries. Geoderma Reg. 2021, 27, e00436. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Mouazen, A.M. Removal of External Influences from On-Line Vis-NIR Spectra for Predicting Soil Organic Carbon Using Machine Learning. CATENA 2022, 211, 106015. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Mahdianpari, M.; Mohammadimanesh, F.; Behrens, T.; Toomanian, N.; Scholten, T.; Schmidt, K. Multi-Task Convolutional Neural Networks Outperformed Random Forest for Mapping Soil Particle Size Fractions in Central Iran. Geoderma 2020, 376, 114552. [Google Scholar] [CrossRef]
- Veres, M.; Lacey, G.; Taylor, G.W. Deep Learning Architectures for Soil Property Prediction. In Proceedings of the 2015 12th Conference on Computer and Robot Vision, Halifax, NS, Canada, 3–5 June 2015; pp. 8–15. [Google Scholar] [CrossRef]
- Kawamura, K.; Nishigaki, T.; Andriamananjara, A.; Rakotonindrina, H.; Tsujimoto, Y.; Moritsuka, N.; Rabenarivo, M.; Razafimbelo, T. Using a One-Dimensional Convolutional Neural Network on Visible and Near-Infrared Spectroscopy to Improve Soil Phosphorus Prediction in Madagascar. Remote Sens. 2021, 13, 1519. [Google Scholar] [CrossRef]
- Hosseinpour-Zarnaq, M.; Omid, M.; Sarmadian, F.; Ghasemi-Mobtaker, H. A CNN Model for Predicting Soil Properties Using VIS–NIR Spectral Data. Environ. Earth Sci. 2023, 82, 382. [Google Scholar] [CrossRef]
- Singh, S.; Kasana, S.S. Estimation of Soil Properties from the EU Spectral Library Using Long Short-Term Memory Networks. Geoderma Reg. 2019, 18, e00233. [Google Scholar] [CrossRef]
- Syed, S.N.; Lazaridis, P.I.; Khan, F.A.; Ahmed, Q.Z.; Hafeez, M.; Ivanov, A.; Poulkov, V.; Zaharis, Z.D. Deep Neural Networks for Spectrum Sensing: A Review. IEEE Access 2023, 11, 89591–89615. [Google Scholar] [CrossRef]
- Kumar, A.; Gaur, N.; Chakravarty, S.; Alsharif, M.H.; Uthansakul, P.; Uthansakul, M. Analysis of Spectrum Sensing Using Deep Learning Algorithms: CNNs and RNNs. Ain Shams Eng. J. 2024, 15, 102505. [Google Scholar] [CrossRef]
- Singh, S.; Kasana, S.S. Quantitative Estimation of Soil Properties Using Hybrid Features and RNN Variants. Chemosphere 2022, 287, 131889. [Google Scholar] [CrossRef] [PubMed]
- Miao, T.; Ji, W.; Li, B.; Zhu, X.; Yin, J.; Yang, J.; Huang, Y.; Cao, Y.; Yao, D.; Kong, X. Advanced Soil Organic Matter Prediction with a Regional Soil NIR Spectral Library Using Long Short-Term Memory–Convolutional Neural Networks: A Case Study. Remote Sens. 2024, 16, 1256. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, Z.; Yin, Z.; Li, D. Attention-Based CNN Ensemble for Soil Organic Carbon Content Estimation with Spectral Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, F.; Feng, F.; Wang, C. Spatial–Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN. Sensors 2020, 20, 5191. [Google Scholar] [CrossRef]
- Commission, E.; Centre, J.R.; Jones, A.; Fernández-Ugalde, O.; Scarpa, S. LUCAS 2015 Topsoil Survey—Presentation of Dataset and Results; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Institute for Environment and Sustainability (Joint Research Centre); Jones, A.; Montanarella, L.; Tóth, G. LUCAS Topsoil Survey—Methodology, Data and Results; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. A Conditioned Latin Hypercube Method for Sampling in the Presence of Ancillary Information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; Van Wesemael, B. Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef] [PubMed]
- Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but Efficient Signal Pre-Processing in Soil Organic Carbon Spectroscopic Estimation. Geoderma 2017, 298, 46–53. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Yan, X.; Yang, C.; Feng, M.; Xiao, L.; Song, X.; Zhang, M.; Shafiq, F.; Sun, H.; et al. Evaluation of Data Pre-Processing and Regression Models for Precise Estimation of Soil Organic Carbon Using Vis–NIR Spectroscopy. J. Soils Sediments 2023, 23, 634–645. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.R.; et al. A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Ding, M.; Liu, H.; Yang, D.; Wu, X. An Ionospheric TEC Forecasting Model Based on a CNN-LSTM-Attention Mechanism Neural Network. Remote Sens. 2022, 14, 2433. [Google Scholar] [CrossRef]
- Cao, L.; Sun, M.; Yang, Z.; Jiang, D.; Yin, D.; Duan, Y. A Novel Transformer-CNN Approach for Predicting Soil Properties from LUCAS Vis-NIR Spectral Data. Agronomy 2024, 14, 1998. [Google Scholar] [CrossRef]
- Feng, G.; Li, Z.; Zhang, J.; Wang, M. Multi-Scale Spatial Attention-Based Multi-Channel 2D Convolutional Network for Soil Property Prediction. Sensors 2024, 24, 4728. [Google Scholar] [CrossRef] [PubMed]
Parameters | Setting |
---|---|
Number of LSTM layers | 2 |
LSTM units/hidden neurons | 16 |
Cov1D * filters | 64/128/256/384/512 |
Cov1D kernels | 3 |
Cov1D strides | 2 |
Dropout | 0.02 |
Activation | ReLU |
Dense layer parameters | 128/1 |
Epoch | 100 |
Learning rate | 0.0005 |
Optimizer | Adam |
Batch size | 128 |
Loss function | Mean absolute error |
RPD | Meaning | Level |
---|---|---|
RPD > 3 | Excellent Model | A |
2.5 ≤ RPD < 3.0 | Good Model | B |
2.0 ≤ RPD ≤ 2.5 | Approximate Model | C |
RPD < 2 | Unsatisfactory Model | D |
Properties | Set | N | Min | Max | Q25 | Median | Q75 | Mean | Std | Skewness | CV * (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
OC (g·kg−1) | Total | 21,782 | 0.10 | 560.20 | 12.50 | 20.40 | 38.60 | 43.24 | 76.62 | 4.36 | 177.18 |
Training | 18,516 | 0.10 | 560.20 | 12.50 | 20.30 | 38.30 | 42.81 | 75.99 | 4.41 | 177.51 | |
Test | 3266 | 0.20 | 555.50 | 12.60 | 21.20 | 39.80 | 45.71 | 80.08 | 4.11 | 175.19 | |
N (g·kg−1) | Total | 21,782 | 0.00 | 38.50 | 1.30 | 2.00 | 3.30 | 3.10 | 3.67 | 3.91 | 118.32 |
Training | 18,516 | 0.00 | 37.60 | 1.30 | 2.00 | 3.30 | 3.08 | 3.64 | 3.91 | 118.09 | |
Test | 3266 | 0.00 | 38.50 | 1.30 | 2.00 | 3.40 | 3.23 | 3.85 | 3.87 | 119.32 | |
CaCO3 (g·kg−1) | Total | 21,782 | 0.00 | 976.00 | 0.00 | 1.00 | 19.00 | 57.39 | 135.46 | 2.91 | 236.05 |
Training | 18,516 | 0.00 | 976.00 | 0.00 | 1.00 | 20.00 | 57.83 | 135.76 | 3.87 | 234.73 | |
Test | 3266 | 0.00 | 962.00 | 0.00 | 0.00 | 16.00 | 54.85 | 133.79 | 3.11 | 243.90 | |
pH(H2O) | Total | 21,782 | 3.17 | 10.37 | 4.92 | 6.07 | 7.45 | 6.13 | 1.35 | 0.01 | 21.95 |
Training | 18,516 | 3.17 | 10.37 | 4.93 | 6.08 | 7.45 | 6.14 | 1.35 | 0.00 | 21.92 | |
Test | 3266 | 3.51 | 9.07 | 4.87 | 6.03 | 7.46 | 6.10 | 1.35 | 0.03 | 22.14 |
Properties | Model | Without Removing Spectral Data | Removing Spectral Data | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | RPD | R2 | RMSE | MAE | RPD | ||
OC | LSTM-CNN-Attention | 0.930 | 19.592 | 9.34 | 3.748 | 0.949 | 16.687 | 8.599 | 3.940 |
CNN | 0.897 | 22.758 | 12.517 | 3.262 | 0.913 | 21.970 | 11.020 | 3.379 | |
PLSR | 0.868 | 26.798 | 14.843 | 2.771 | 0.879 | 25.816 | 13.941 | 2.876 | |
RF | 0.904 | 22.481 | 11.059 | 3.303 | 0.918 | 21.281 | 10.752 | 3.489 | |
N | LSTM-CNN-Attention | 0.905 | 1.005 | 0.624 | 3.692 | 0.916 | 0.993 | 0.580 | 3.737 |
CNN | 0.825 | 1.437 | 0.928 | 2.385 | 0.829 | 1.419 | 0.777 | 2.415 | |
PLSR | 0.812 | 1.705 | 1.027 | 2.010 | 0.828 | 1.502 | 0.946 | 2.282 | |
RF | 0.848 | 1.331 | 0.779 | 2.574 | 0.849 | 1.331 | 0.777 | 2.574 | |
CaCO3 | LSTM-CNN-Attention | 0.934 | 34.641 | 13.123 | 5.180 | 0.943 | 33.370 | 12.990 | 5.377 |
CNN | 0.886 | 46.981 | 18.842 | 2.984 | 0.889 | 46.770 | 18.420 | 2.997 | |
PLSR | 0.832 | 48.820 | 24.953 | 2.871 | 0.841 | 48.603 | 24.409 | 2.884 | |
RF | 0.910 | 40.123 | 18.164 | 3.494 | 0.919 | 39.850 | 18.092 | 3.518 | |
pH(H2O) | LSTM-CNN-Attention | 0.923 | 0.370 | 0.266 | 2.702 | 0.926 | 0.364 | 0.265 | 3.352 |
CNN | 0.876 | 0.495 | 0.369 | 2.385 | 0.888 | 0.448 | 0.343 | 2.985 | |
PLSR | 0.806 | 0.628 | 0.419 | 2.129 | 0.818 | 0.571 | 0.384 | 2.342 | |
RF | 0.836 | 0.560 | 0.381 | 2.388 | 0.838 | 0.558 | 0.379 | 2.397 |
Properties | Metrics | LSTM | LSTM-Attention | CNN | LSTM-CNN | LSTM-CNN-Attention |
---|---|---|---|---|---|---|
OC | R2 | 0.769 | 0.863 | 0.913 | 0.926 | 0.949 |
RMSE | 35.670 | 27.490 | 21.970 | 20.160 | 16.687 | |
MAE | 17.950 | 14.850 | 11.020 | 10.820 | 8.599 | |
RPD | 2.081 | 2.701 | 3.379 | 3.683 | 3.940 | |
N | R2 | 0.723 | 0.769 | 0.829 | 0.883 | 0.916 |
RMSE | 1.805 | 1.648 | 1.419 | 1.174 | 0.993 | |
MAE | 1.087 | 1.014 | 0.777 | 0.704 | 0.580 | |
RPD | 1.899 | 2.079 | 2.415 | 2.919 | 3.737 | |
CaCO3 | R2 | 0.611 | 0.811 | 0.889 | 0.915 | 0.943 |
RMSE | 87.400 | 60.910 | 46.770 | 40.780 | 33.370 | |
MAE | 35.830 | 24.610 | 18.420 | 15.920 | 12.909 | |
RPD | 1.604 | 2.301 | 2.997 | 3.437 | 5.377 | |
pH(H2O) | R2 | 0.284 | 0.409 | 0.888 | 0.906 | 0.926 |
RMSE | 1.132 | 1.028 | 0.448 | 0.410 | 0.364 | |
MAE | 0.922 | 0.786 | 0.343 | 0.308 | 0.265 | |
RPD | 1.181 | 1.301 | 2.985 | 3.262 | 3.352 |
Properties | Metrics | Proposed | PCA-LSTM | CNN-LSTM | CNN-GRU | PLSR | SVR | RF |
---|---|---|---|---|---|---|---|---|
OC | R2 | 0.949 | 0.890 | 0.923 | 0.936 | 0.879 | 0.897 | 0.918 |
RMSE | 16.687 | 24.619 | 20.535 | 18.779 | 25.816 | 23.795 | 21.281 | |
MAE | 8.599 | 13.605 | 10.820 | 9.597 | 13.941 | 14.209 | 10.752 | |
RPD | 3.940 | 2.670 | 3.202 | 3.501 | 2.876 | 3.120 | 3.489 | |
N | R2 | 0.916 | 0.813 | 0.878 | 0.904 | 0.828 | 0.849 | 0.849 |
RMSE | 0.993 | 1.483 | 1.199 | 1.062 | 1.502 | 1.332 | 1.331 | |
MAE | 0.580 | 0.915 | 0.716 | 0.642 | 0.946 | 0.880 | 0.777 | |
RPD | 3.737 | 2.503 | 3.095 | 3.496 | 2.282 | 2.572 | 2.574 | |
CaCO3 | R2 | 0.943 | 0.895 | 0.919 | 0.935 | 0.841 | 0.876 | 0.919 |
RMSE | 33.370 | 45.146 | 39.973 | 35.845 | 48.603 | 46.497 | 39.850 | |
MAE | 12.909 | 20.076 | 16.627 | 14.468 | 24.409 | 21.430 | 18.092 | |
RPD | 5.377 | 3.105 | 4.489 | 5.006 | 2.884 | 3.015 | 3.518 | |
pH(H2O) | R2 | 0.926 | 0.728 | 0.869 | 0.894 | 0.818 | 0.821 | 0.838 |
RMSE | 0.364 | 0.698 | 0.484 | 0.436 | 0.571 | 0.564 | 0.558 | |
MAE | 0.265 | 0.510 | 0.371 | 0.315 | 0.384 | 0.382 | 0.379 | |
RPD | 3.352 | 1.747 | 2.519 | 2.798 | 2.342 | 2.371 | 2.397 |
Properties | LSTM-CNN-Attention | Hosseinpour-Zarnaq et al. (2023) [25] | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | RPD | R2 | RMSE | MAE | RPD | |
OC | 0.949 | 16.687 | 8.599 | 3.940 | 0.94 | 17.04 | 9.02 | 4.02 |
N | 0.916 | 0.993 | 0.580 | 3.737 | 0.89 | 1.21 | 0.70 | 3.02 |
CaCO3 | 0.943 | 33.370 | 12.909 | 5.377 | 0.93 | 34.19 | 13.52 | 3.89 |
pH (H2O) | 0.926 | 0.364 | 0.265 | 3.352 | 0.87 | 0.48 | 0.37 | 2.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Shen, L.; Zhu, X.; Xie, Y.; He, S. Spectral Data-Driven Prediction of Soil Properties Using LSTM-CNN-Attention Model. Appl. Sci. 2024, 14, 11687. https://doi.org/10.3390/app142411687
Liu Y, Shen L, Zhu X, Xie Y, He S. Spectral Data-Driven Prediction of Soil Properties Using LSTM-CNN-Attention Model. Applied Sciences. 2024; 14(24):11687. https://doi.org/10.3390/app142411687
Chicago/Turabian StyleLiu, Yiqiang, Luming Shen, Xinghui Zhu, Yangfan Xie, and Shaofang He. 2024. "Spectral Data-Driven Prediction of Soil Properties Using LSTM-CNN-Attention Model" Applied Sciences 14, no. 24: 11687. https://doi.org/10.3390/app142411687
APA StyleLiu, Y., Shen, L., Zhu, X., Xie, Y., & He, S. (2024). Spectral Data-Driven Prediction of Soil Properties Using LSTM-CNN-Attention Model. Applied Sciences, 14(24), 11687. https://doi.org/10.3390/app142411687