Blanching Temperature and Time Effects on the Chemical Composition of Sargassum horneri and Its Rumen Fermentation Characteristics and Greenhouse Gas Emissions
<p>Physical characteristics of SH after blanching treatments. CON, LOW, MEDIUM, and HIGH represent blanching process at 21, 60, 70, and 80 °C, respectively.</p> "> Figure 2
<p>The effect of blanching temperature and supplementation level on total gas emission, CO<sub>2</sub>, and CH<sub>4</sub> of <span class="html-italic">Sargassum horneri</span> in the rumen incubated for 48 h. CON, <span class="html-italic">Sargassum horneri</span> blanched in cool water (21 °C) for 3 min; LOS, <span class="html-italic">Sargassum horneri</span> blanched in water at 70 °C for 3 min; 0, 1, 3, and 5%, supplemented levels of <span class="html-italic">Sargassum horneri</span>. The significances of temperature, level, and temperature × level on total gas mL/g DMD are <span class="html-italic">p</span> < 0.001, <span class="html-italic">p</span> = 0.002, and <span class="html-italic">p</span> = 0.023, respectively. The significances of temperature, level, and temperature × level on total gas mL/g OMD are <span class="html-italic">p</span> < 0.001, <span class="html-italic">p</span> = 0.003, and <span class="html-italic">p</span> = 0.081, respectively. The significances of temperature, level, and temperature × level on CO<sub>2</sub> mL/g DMD are <span class="html-italic">p</span> = 0.001, <span class="html-italic">p</span> = 0.305, and <span class="html-italic">p</span> = 0.759, respectively. The significances of temperature, level, and temperature × level on CO<sub>2</sub> mL/g OMD are <span class="html-italic">p</span> = 0.945, <span class="html-italic">p</span> = 0.638, and <span class="html-italic">p</span> = 0.885, respectively. The significances of temperature, level, and temperature × level on CH<sub>4</sub> mL/g DMD are <span class="html-italic">p</span> < 0.001, <span class="html-italic">p</span> = 0.010, and <span class="html-italic">p</span> = 0.153, respectively. The significances of temperature, level, and temperature × level on CH<sub>4</sub> mL/g OMD are <span class="html-italic">p</span> = 0.259, <span class="html-italic">p</span> = 0.169, and <span class="html-italic">p</span> = 0.281, respectively. <sup>a–c</sup> Means in the same CON treatment with different superscripts differ significantly (<span class="html-italic">p</span> < 0.05). <sup>A,B</sup> Means in the same LOS treatment with different superscripts differ significantly (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sargassum horneri (Experiment 1)
2.2. Chemical Composition (Experiment 1)
2.3. In Vitro Rumen Incubation (Experiment 2)
2.4. Ruminal Fermentation Characteristics and Greenhouse Gas Emissions (Experiment 2)
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition (Experiment 1)
3.2. Mineral Composition (Experiment 1)
3.3. In Vitro Nutrient Digestibility (Experiment 2)
3.4. Rumen Fermentation Characteristics (Experiment 2)
3.5. Greenhouse Gas Emission (Experiment 2)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.; Shin, J.; Kim, K.Y.; Ryu, J.H. Long-term trend of green and golden tides in the Eastern Yellow Sea. J. Coast. Res. 2019, 90, 317–323. [Google Scholar] [CrossRef]
- Gao, X.; Guo, C.; Hao, J.; Zhao, Z.; Long, H.; Li, M. Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int. J. Biol. Macromol. 2020, 164, 4423–4434. [Google Scholar] [CrossRef]
- Zhu, X.; Laura, E.H.; Sevindik, O.; Sun, D.; Selli, S.; Kelebek, H.; Tiwari, B.K. Impacts of novel blanching treatments combined with commercial drying methods on the physicochemical properties of Irish brown seaweed Alaria esculenta. Food Chem. 2022, 69, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Reboleira, J.; Freitas, R.; Pinteus, S.; Silva, J.; Alves, C.; Pedrosa, R.; Bernardino, S. Brown Seaweeds. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 171–176. [Google Scholar]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Zhu, X.; Healy, L.; Zhang, Z.; Maguire, J.; Sun, D.W.; Tiwari, B.K. Novel postharvest processing strategies for value-added applications of marine algae. J. Sci. Food Agric. 2021, 101, 4444–4455. [Google Scholar] [CrossRef]
- Nielsen, B.V.; Maneein, S.; Farid, A.; Mahmud, M.; Milledge, J.J. The effects of halogenated compounds on the anaerobic digestion of macroalgae. Fermentation 2020, 6, 85. [Google Scholar] [CrossRef]
- Evans, F.; Critchley, A. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Angulo, C.; Chavez-Infante, L.; Reyes-Becerril, M.; Angulo, M.; Romero-Geraldo, R.; Linas-Cervantes, X.; Cepeda-Palacios, R. Immunostimulatory and antioxidant effects of supplemental feeding with macroalga Sargassum spp. on goat kids. Trop Anim. Health. Prod. 2020, 52, 2023–2033. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Jo, S.U.; Guan, L.L.; Seo, J.; Kim, H.; Lee, S.S.; Lee, S.S. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Marr, K.A.; Unger, C.; Walderdoff, L.; Butler, T. Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environ. Sci. Policy 2022, 134, 127–136. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Methane Emissions in Livestock and Rice Systems; FAO: Rome, Italy, 2023. [Google Scholar]
- Van Gasteler, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.; Inacio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pireira, L.; Bahcevandziev, K. Seaweed potential in the animal feed: A review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Carriquiry, M.; Weber, W.J.; Baumgard, L.H.; Crooker, B.A. In vitro biohydrogenation of four dietary fats. Anim. Feed Sci. Technol. 2008, 141, 339–355. [Google Scholar] [CrossRef]
- Adesogan, A.; Krueger, N.; Salawu, M.; Dean, D.; Staples, C. The influence of treatment with dual-purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. J. Dairy Sci. 2004, 87, 3407–3416. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Muck, R.; Dickerson, J. Storage temperature effects on proteolysis in alfalfa silage. Trans. ASAE 1988, 31, 1005–1009. [Google Scholar] [CrossRef]
- Jin, Q.; You, W.; Tan, X.; Liu, G.; Zhang, X.; Liu, X.; Wan, F.; Wei, C. Caffeic acid modulates methane production and rumen fermentation in an opposite way with high-forage or high-concentrate substrate in vitro. J. Sci. Food Agric. 2021, 101, 3013–3020. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT User’s Guide, version 9.4; SAS Institute Inc.: Cary, NC, USA, 2012.
- Park, K.; Jo, Y.; Nejad, J.G.; Lee, J.; Lee, H. Evaluation of nutritional value of Ulva sp. and Sargassum horneri as potential eco-friendly ruminants feed. Algal Res. 2022, 65, 102706. [Google Scholar] [CrossRef]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris. Phytochemistry 2009, 70, 1069–1075. [Google Scholar] [CrossRef]
- Cabrita, A.R.; Maia, M.R.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J. Tracing seaweeds as mineral sources for farm animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Fellows, P. Food Processing Technology; Woodhead Publishing Limited: Cambridge, UK, 2000. [Google Scholar]
- MacArtain, P.; Gill, C.I.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional value of edible seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Mineral Tolerance of Animals, 2nd ed.; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Marin, A.; Valdez, M.C.; Carrillo, S.; Hernandez, H.; Monroy, A.; Sangines, L.; Gil, F.P. The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions. Rev. Biol. Trop. 2009, 57, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.; Gupta, S.; Abu-Ghannam, N. Effect of different rehydration temperatures on the moisture, content of phenolic compounds, antioxidant capacity and textural properties of edible Irish brown seaweed. LWT 2012, 47, 300–307. [Google Scholar] [CrossRef]
- Correia, H.; Soares, C.; Morais, S.; Pinto, E.; Marques, A.; Nunes, M.L.; Almeida, A.; Delerue-Matos, C. Seaweeds rehydration and boiling: Impact on iodine, sodium, potassium, selenium, and total arsenic contents and health benefits for consumption. Food Chem. Toxicol. 2021, 155, 112385. [Google Scholar] [CrossRef]
- Trigo, J.P.; Stedt, K.; Schmidt, A.E.; Kollander, B.; Edlund, U.; Nylund, G.; Pavia, H.; Abdollahi, M.; Undeland, I. Mild blanching prior to pH-shift processing of Saccharina latissima retains protein extraction yields and amino acid levels of extracts while minimizing iodine content. Food Chem. 2023, 404, 134576. [Google Scholar] [CrossRef]
- Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.A.; Romanos, G.E.; Katsaros, F.K. Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 2010, 345, 469–473. [Google Scholar] [CrossRef]
- Akomea-Frempong, S.; Skonberg, D.I.; Camire, M.E.; Perry, J.J. Impact of blanching, freezing, and fermentation on physicochemical, microbial, and sensory quality of sugar kelp (Saccharina latissima). Foods 2021, 10, 2258. [Google Scholar] [CrossRef]
- Maeng, W. Ruminant Nutrition; Hyangmunsa: Seoul, Republic of Korea, 1998; pp. 74–76. [Google Scholar]
- Thauer, R.K.; Kaster, A.K.; Seedorf, H.; Buckel, W.; Hedderich, R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008, 6, 579–591. [Google Scholar] [CrossRef]
- Fleurence, J.; Levine, I. Seaweed in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Wang, Y.; Alexander, T.W.; McAllister, T.A. In vitro effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on rumen bacterial populations and fermentation. J. Sci. Food Agric. 2009, 89, 2252–2260. [Google Scholar] [CrossRef]
- Kobayashi, Y. Abatement of methane production from ruminants: Trends in the manipulation of rumen fermentation. Asian-Australas. J. Anim. Sci. 2010, 23, 410–416. [Google Scholar] [CrossRef]
- Wettstein, H.R.; Machmüller, A.; Kreuzer, M. Effects of raw and modified canola lecithins compared to canola oil, canola seed, and soy lecithin on ruminal fermentation measured with rumen simulation technique. Anim. Feed Sci. Technol. 2000, 85, 153–169. [Google Scholar] [CrossRef]
- Henderson, C. The influence of extracellular hydrogen on the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica, and Selenomonas ruminantium. J. Gen. Microbiol. 1980, 119, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef] [PubMed]
- Kinley, R.D.; de Nys, R.; Vucko, M.J.; Machado, L.; Tomkins, N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci. 2016, 56, 282–289. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Bach, S.J.; McAllister, T.A. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim. Feed Sci. Technol. 2008, 145, 375–395. [Google Scholar] [CrossRef]
- Kim, Y.; Park, K.; Nejad, J.G.; Yoon, W.; Kim, S.; Lee, J.; Lee, H. Rumen methane abatement by phlorotannin derivatives (phlorofucofuroeckol-A, dieckol, and 8,8′-bieckol) and its relationship with the hydroxyl group and ether linkage. Anim. Feed Sci. Technol. 2022, 293, 115468. [Google Scholar] [CrossRef]
- Wahyuni, D.S.; Jayanegara, A.; Wiryawan, K.G.; Ridwan, R.; Kusumaningrum, S.; Akhadiarto, S.; Fidriyanto, R.; Fitri, A.; Darmawan, W.A.; Surachman, M.; et al. Evaluation of several macroalgae species on methane emission and antioxidant activity based on in vitro rumen fermentation characteristics. IOP Conf. Ser. Earth Environ. Sci. 2023, 1266, 012072. [Google Scholar] [CrossRef]
CON 1 | LOW | MEDIUM | HIGH | SEM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 min | 2 min | 3 min | 1 min | 2 min | 3 min | 1 min | 2 min | 3 min | 1 min | 2 min | 3 min | |||||
DM | 11.0 a | 9.82 ab | 9.59 ab | 8.51 bc | 7.97 bcd | 5.78 d | 7.68 bcd | 6.96 cd | 6.42 cd | 8.58 bc | 8.46 bc | 7.56 bcd | 0.819 | |||
CP | 14.9 bcd | 14.9 bcd | 13.9 d | 16.0 ab | 15.6 abc | 15.8 ab | 15.9 abcd | 16.0 a | 15.9 ab | 16.4 a | 15.4 abc | 14.4 cd | 0.519 | |||
EE | 1.05 e | 1.35 de | 1.62 bcde | 1.31 abc | 1.31 de | 1.47 de | 1.70 bcde | 1.75 ab | 1.86 cde | 2.27 de | 2.35 bcd | 2.81 a | 0.243 | |||
CA | 32.1 a | 31.1 a | 32.7 a | 18.6 b | 18.4 bc | 16.2 bcd | 18.5 b | 16.4 bcd | 15.3 d | 16.0 bcd | 15.4 cd | 14.6 d | 1.160 | |||
NDF | 20.6 g | 22.8 fg | 26.3 ef | 29.0 de | 35.5 ab | 34.7 abc | 29.7 de | 31.8 bcd | 32.0 bcd | 28.6 ab | 31.7 cd | 36.9 a | 1.561 | |||
ADF | 13.0 d | 14.1 d | 15.5 cd | 17.5 bc | 21.4 a | 20.6 a | 17.5 bc | 20.3 a | 20.3 a | 21.3 a | 19.9 ab | 20.9 a | 0.983 | |||
Contrasts | DM | CP | EE | CA | NDF | ADF | ||||||||||
TEMP | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||||||
TIME | <0.001 | 0.090 | 0.005 | 0.002 | <0.001 | <0.001 | ||||||||||
TEMP × TIME | 0.519 | 0.043 | 0.576 | 0.082 | 0.295 | 0.222 | ||||||||||
TEMP Linear | <0.001 | 0.006 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||||||
TEMP Quadratic | 0.001 | 0.145 | 0.001 | 0.004 | 0.133 | 0.036 | ||||||||||
TIME Linear | 0.007 | 0.028 | 0.109 | 0.867 | <0.001 | <0.001 | ||||||||||
TIME Quadratic | 0.758 | 0.546 | 0.728 | 0.279 | 0.869 | 0.454 |
CON 1 | LOW | MEDIUM | HIGH | SEM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 min | 2 min | 3 min | 1 min | 2 min | 3 min | 1 min | 2 min | 3 min | 1 min | 2 min | 3 min | |||||
Fe, mg/g | 0.87 ab | 0.76 ab | 0.82 ab | 0.46 b | 0.46 b | 0.51b | 0.49 b | 0.94 ab | 0.59 ab | 0.78 ab | 0.94 ab | 1.49 a | 0.241 | |||
Zn, mg/g | 0.15 ab | 0.15 ab | 0.14 b | 0.19 ab | 0.20 a | 0.20 a | 0.19 ab | 0.18 ab | 0.18 ab | 0.18 ab | 0.16 ab | 0.15 ab | 0.020 | |||
Na, mg/g | 35.2 a | 24.2 bc | 28.9 ab | 18.0 cd | 16.7 cd | 15.6 d | 17.2 cd | 14.8 d | 12.3 d | 17.4 cd | 15.1 d | 14.1 d | 2.799 | |||
Pb, mg/g | 0.11 | 0.11 | 0.12 | 0.12 | 0.11 | 0.11 | 0.10 | 0.11 | 0.11 | 0.12 | 0.11 | 0.12 | 0.006 | |||
Mg, mg/g | 23.5 a | 21.1 a | 22.5 a | 13.2 b | 14.5 b | 14.8 b | 13.4 b | 15.0 b | 14.4 b | 18.6 ab | 17.8 ab | 18.9 ab | 2.020 | |||
Ca, mg/g | 29.9 ab | 27.4 ab | 29.9 ab | 24.8 b | 28.5 ab | 28.1 ab | 25.0 b | 31.5 ab | 29.8 ab | 33.9 ab | 32.8 ab | 36.6 a | 3.693 | |||
K, mg/g | 148.8 ab | 184.0 a | 182.3 a | 89.3 ab | 89.9 ab | 63.5 b | 65.5 b | 59.0 ab | 49.7 ab | 55.7 ab | 52.6 ab | 42.8 a | 38.92 | |||
P, mg/g | 2.38 abc | 2.67 a | 2.60 ab | 2.15 abcd | 2.04 abcd | 1.83 cd | 1.97 abcd | 1.85 cd | 1.55 d | 1.91 bcd | 1.72 cd | 1.76 cd | 0.246 | |||
As, µg/g | 3.24 a | 2.83 a | 3.40 a | 1.69 b | 1.60 b | 1.44 b | 1.65 b | 1.26 b | 1.40 b | 1.55 b | 1.03 b | 0.81 b | 0.003 | |||
Contrast | Fe | Zn | Na | Pb | Mg | Ca | K | P | As | |||||||
TEMP | 0.002 | <0.001 | <0.001 | 0.111 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | |||||||
TIME | 0.497 | 0.345 | <0.001 | 0.326 | 0.779 | 0.215 | 0.760 | 0.220 | 0.049 | |||||||
TEMP × TIME | 0.154 | 0.712 | 0.097 | 0.022 | 0.646 | 0.434 | 0.879 | 0.328 | 0.305 | |||||||
TEMP Linear | 0.790 | 0.001 | <0.001 | 0.679 | <0.001 | 0.056 | <0.001 | <0.001 | <0.001 | |||||||
TEMP Quadratic | <0.001 | <0.001 | 0.009 | 0.048 | <0.001 | <0.001 | 0.408 | 0.517 | 0.168 | |||||||
TIME Linear | 0.274 | 0.131 | <0.001 | 0.543 | 0.573 | 0.083 | 0.692 | 0.110 | 0.459 | |||||||
TIME Quadratic | 0.915 | 0.958 | 0.032 | 0.267 | 0.651 | 0.818 | 0.425 | 0.543 | 0.494 |
CON 1 | LOS | SEM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 1% | 3% | 5% | 0% | 1% | 3% | 5% | |||
24 h | ||||||||||
IVDMD | 38.7 ab | 40.4 ab | 39.1 ab | 37.5 ab | 39.9 ab | 41.4 a | 34.8 b | 37.4 ab | 2.484 | |
IVOMD | 50.6 ab | 51.1 a | 48.8 b | 47.5 ab | 50.8 a | 51.9 a | 46.1 b | 47.7 ab | 1.990 | |
48 h | ||||||||||
IVDMD | 54.7 a | 51.2 ab | 49.1 b | 48.9 b | 54.1 a | 55.3 a | 53.9 a | 52.7 ab | 1.850 | |
IVOMD | 65.1 ab | 59.2 ab | 58.8 b | 59.2 ab | 65.3 a | 64.5 ab | 60.8 ab | 61.4 ab | 2.700 | |
Contrast | 24 h IVDMD | 24 h IVOMD | 48 h IVDMD | 48 h IVOMD | ||||||
TEMP | 0.535 | 0.625 | <0.001 | 0.023 | ||||||
LEVEL | 0.018 | <0.001 | 0.003 | 0.004 | ||||||
TEMP × LEVEL | 0.125 | 0.290 | 0.031 | 0.396 | ||||||
LEVEL Linear | 0.034 | <0.001 | <0.001 | 0.021 | ||||||
LEVEL Quadratic | 0.574 | 0.633 | 0.033 | 0.036 |
CON 1 | LOS | SEM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 1% | 3% | 5% | 0% | 1% | 3% | 5% | |||
pH | 5.36 | 5.38 | 5.38 | 5.36 | 5.38 | 5.33 | 5.39 | 5.37 | 0.034 | |
NH3-N | 18.0 | 19.6 | 19.1 | 18.9 | 19.1 | 18.9 | 18.2 | 17.3 | 1.557 | |
TVFA, mM/L | 117.4 a | 112.0 ab | 99.6 b | 100.2 ab | 101.9 ab | 77.9 c | 74.6 c | 70.7 c | 4.987 | |
Acetate, % mol | 59.1 | 59.7 | 59.9 | 58.4 | 59.4 | 60.0 | 60.5 | 58.7 | 1.095 | |
Propionate, % mol | 23.6 a | 22.0 b | 22.3 b | 23.4 a | 23.9 a | 23.1 a | 22.5 b | 25.0 a | 0.883 | |
Butyrate, % mol | 11.3 | 11.4 | 11.5 | 11.6 | 11.3 | 11.2 | 10.9 | 11.3 | 0.865 | |
A:P ratio | 2.53 | 2.71 | 2.48 | 2.50 | 2.44 | 2.58 | 2.70 | 2.38 | 0.123 | |
Contrast | pH | NH3-N | TVFA | Acetate | Propionate | Butyrate | A:P ratio | |||
TEMP | 0.761 | 0.991 | <0.001 | 0.561 | 0.052 | 0.410 | 0.369 | |||
LEVEL | 0.447 | 0.240 | 0.007 | 0.032 | 0.010 | 0.595 | 0.029 | |||
TEMP × LEVEL | 0.143 | 0.326 | 0.003 | 0.799 | 0.508 | 0.523 | 0.162 | |||
LEVEL Linear | 0.848 | 0.428 | 0.557 | 0.142 | 0.156 | 0.478 | 0.362 | |||
LEVEL Quadratic | 0.744 | 0.677 | 0.203 | 0.003 | 0.002 | 0.358 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardani, A.R.D.; Seo, M.-J.; Kim, H.-C.; Hwang, I.-K.; Kim, S.-K.; Baeg, C.-H.; Kim, J.-Y.; Kim, S.-C. Blanching Temperature and Time Effects on the Chemical Composition of Sargassum horneri and Its Rumen Fermentation Characteristics and Greenhouse Gas Emissions. Appl. Sci. 2024, 14, 11313. https://doi.org/10.3390/app142311313
Wardani ARD, Seo M-J, Kim H-C, Hwang I-K, Kim S-K, Baeg C-H, Kim J-Y, Kim S-C. Blanching Temperature and Time Effects on the Chemical Composition of Sargassum horneri and Its Rumen Fermentation Characteristics and Greenhouse Gas Emissions. Applied Sciences. 2024; 14(23):11313. https://doi.org/10.3390/app142311313
Chicago/Turabian StyleWardani, Arrynda Rachma Dyasti, Myeong-Ji Seo, Hyun-Chul Kim, Il-Ki Hwang, Shin-Kwon Kim, Chang-Hyun Baeg, Ji-Yoon Kim, and Sam-Churl Kim. 2024. "Blanching Temperature and Time Effects on the Chemical Composition of Sargassum horneri and Its Rumen Fermentation Characteristics and Greenhouse Gas Emissions" Applied Sciences 14, no. 23: 11313. https://doi.org/10.3390/app142311313
APA StyleWardani, A. R. D., Seo, M.-J., Kim, H.-C., Hwang, I.-K., Kim, S.-K., Baeg, C.-H., Kim, J.-Y., & Kim, S.-C. (2024). Blanching Temperature and Time Effects on the Chemical Composition of Sargassum horneri and Its Rumen Fermentation Characteristics and Greenhouse Gas Emissions. Applied Sciences, 14(23), 11313. https://doi.org/10.3390/app142311313