Evaluation of Machine Learning Applications for the Complex Near-Critical Phase Behavior Modelling of CO2–Hydrocarbon Systems
<p>Model scenarios: (<b>a</b>) Direct Model, (<b>b</b>) Hybrid Model 1, and (<b>c</b>) Hybrid Model 2.</p> "> Figure 2
<p>Reference case generated using Peng–Robinson equation of state: (<b>a</b>) near-critical conditions of 80 atm and 60 °C; and (<b>b</b>) regular conditions of 75 atm and 60 °C.</p> "> Figure 3
<p>Machine learning (neural network) training, validation, and testing using 4000 flash calculation samples (pressure [80 atm to 40 atm], temperature [57 °C to 67 °C], and overall composition of CO<sub>2</sub>-C4-C10 [0 to 1]) for (<b>a</b>) Direct Model, (<b>b</b>) Hybrid Model 1, and (<b>c</b>) Hybrid Model 2.</p> "> Figure 4
<p>Ternary diagram generated using the direct machine learning model (<span class="html-italic">x<sub>i</sub></span>, <span class="html-italic">y<sub>i</sub></span>): (<b>a</b>) near-critical conditions of 80 atm and 60 °C; and (<b>b</b>) regular conditions of 75 atm and 60 °C.</p> "> Figure 5
<p>Ternary diagram generated using Hybrid Model 1—Ki → RR → <span class="html-italic">x<sub>i</sub></span>, <span class="html-italic">y<sub>i</sub></span>: (<b>a</b>) near-critical conditions of 80 atm and 60 °C; and (<b>b</b>) regular conditions of 75 atm and 60 °C.</p> "> Figure 6
<p>Ternary diagram generated using Hybrid Model 2—log(<span class="html-italic">x<sub>i</sub></span>), log(<span class="html-italic">y<sub>i</sub></span>) → Ki → RR → <span class="html-italic">x<sub>i</sub></span>, <span class="html-italic">y<sub>i</sub></span>: (<b>a</b>) near-critical conditions of 80 atm and 60 °C; and (<b>b</b>) regular conditions 75 atm and 60 °C.</p> "> Figure 7
<p>Ternary diagrams for far-from-critical conditions of 50 atm and 60 °C: (<b>a</b>) Peng–Robinson EoS; (<b>b</b>) Direct Model; (<b>c</b>) Hybrid Model 1; and (<b>d</b>) Hybrid Model 2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Generation and Sampling
2.2. Model Scenarios
2.2.1. Near-Critical Point Behavior
2.2.2. Phase Behavior Modeling and Validation
2.2.3. Flash Calculations and the Rachford–Rice Equation
2.2.4. Machine Learning Implementation
3. Results and Discussions
4. Conclusions
- 1.
- All machine learning algorithms showed great performance during training and validation. However, when the machine learning algorithms were used directly for comprehensive testing in compositional space, it is evident that direct model implementation was not producing physical features, such as fluctuating K-values and inaccuracies near critical point compositions.
- 2.
- Hybrid models: both hybrid models produced more physically constrained results, with Hybrid Model 2 providing the smoothest and most reliable predictions.
- 3.
- Near-critical conditions: all models faced challenges in the near-critical region, but Hybrid Model 2 was closest to the physical model in capturing accurate phase behavior.
- 4.
- Far-from-critical conditions: under far-from-critical conditions, the overall behavior of all three models produced reasonable results.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Sample Input/Output Data
Input | |||||
---|---|---|---|---|---|
dataID | P(atm) | T(K) | z_CO2 | z_nC4 | z_nC10 |
1 | 60.5 | 336.1 | 0.64 | 0.19 | 0.16 |
2 | 52.0 | 332.6 | 0.50 | 0.31 | 0.19 |
3 | 47.2 | 332.7 | 0.01 | 0.27 | 0.71 |
4 | 63.9 | 334.8 | 0.25 | 0.28 | 0.47 |
5 | 67.4 | 335.9 | 0.94 | 0.04 | 0.02 |
6 | 73.8 | 332.0 | 0.17 | 0.82 | 0.01 |
7 | 49.5 | 336.9 | 0.27 | 0.59 | 0.14 |
8 | 42.1 | 337.7 | 0.35 | 0.08 | 0.57 |
… | … | … | … | … | … |
3999 | 47.1 | 333.4 | 0.38 | 0.30 | 0.32 |
4000 | 79.4 | 338.6 | 0.30 | 0.21 | 0.49 |
Direct Model Output | ||||||
---|---|---|---|---|---|---|
Data ID | x_CO2 | x_nC4 | x_nC10 | y_CO2 | y_nC4 | y_nC10 |
1 | 4.74 × 10−1 | 2.62 × 10−1 | 2.64 × 10−1 | 9.19 × 10−1 | 7.92 × 10−2 | 1.89 × 10−3 |
2 | 4.29 × 10−1 | 3.47 × 10−1 | 2.24 × 10−1 | 8.99 × 10−1 | 1.00 × 10−1 | 1.17 × 10−3 |
3 | 3.86 × 10−1 | 1.84 × 10−1 | 4.30 × 10−1 | 9.47 × 10−1 | 5.12 × 10−2 | 1.39 × 10−3 |
4 | 5.02 × 10−1 | 2.00 × 10−1 | 2.98 × 10−1 | 9.39 × 10−1 | 5.91 × 10−2 | 2.13 × 10−3 |
5 | 5.16 × 10−1 | 1.14 × 10−1 | 3.70 × 10−1 | 9.64 × 10−1 | 3.35 × 10−2 | 2.59 × 10−3 |
6 | 7.21 × 10−1 | 2.76 × 10−1 | 2.63 × 10−3 | 8.34 × 10−1 | 1.66 × 10−1 | 3.94 × 10−4 |
7 | 3.98 × 10−1 | 4.94 × 10−1 | 1.08 × 10−1 | 8.40 × 10−1 | 1.60 × 10−1 | 8.24 × 10−4 |
8 | 3.35 × 10−1 | 7.82 × 10−2 | 5.87 × 10−1 | 9.75 × 10−1 | 2.38 × 10−2 | 1.72 × 10−3 |
… | … | … | … | … | … | … |
3999 | 3.83 × 10−1 | 3.01 × 10−1 | 3.16 × 10−1 | 9.12 × 10−1 | 8.65 × 10−2 | 1.23 × 10−3 |
4000 | 5.85 × 10−1 | 1.37 × 10−1 | 2.78 × 10−1 | 9.50 × 10−1 | 4.60 × 10−2 | 4.04 × 10−3 |
Hybrid Model 2 Output | ||||||
---|---|---|---|---|---|---|
Data ID | ln(x_CO2) | ln(x_nC4) | ln(x_nC10) | ln(y_CO2) | ln(y_nC4) | ln(y_nC10) |
1 | 4.74 × 10−1 | 2.62 × 10−1 | 2.64 × 10−1 | 9.19 × 10−1 | 7.92 × 10−2 | 1.89 × 10−3 |
2 | 4.29 × 10−1 | 3.47 × 10−1 | 2.24 × 10−1 | 8.99 × 10−1 | 1.00 × 10−1 | 1.17 × 10−3 |
3 | 3.86 × 10−1 | 1.84 × 10−1 | 4.30 × 10−1 | 9.47 × 10−1 | 5.12 × 10−2 | 1.39 × 10−3 |
4 | 5.02 × 10−1 | 2.00 × 10−1 | 2.98 × 10−1 | 9.39 × 10−1 | 5.91 × 10−2 | 2.13 × 10−3 |
5 | 5.16 × 10−1 | 1.14 × 10−1 | 3.70 × 10−1 | 9.64 × 10−1 | 3.35 × 10−2 | 2.59 × 10−3 |
6 | 7.21 × 10−1 | 2.76 × 10−1 | 2.63 × 10−3 | 8.34 × 10−1 | 1.66 × 10−1 | 3.94 × 10−4 |
7 | 3.98 × 10−1 | 4.94 × 10−1 | 1.08 × 10−1 | 8.40 × 10−1 | 1.60 × 10−1 | 8.24 × 10−4 |
8 | 3.35 × 10−1 | 7.82 × 10−2 | 5.87 × 10−1 | 9.75 × 10−1 | 2.38 × 10−2 | 1.72 × 10−3 |
… | … | … | … | … | … | … |
3999 | 3.83 × 10−1 | 3.01 × 10−1 | 3.16 × 10−1 | 9.12 × 10−1 | 8.65 × 10−2 | 1.23 × 10−3 |
4000 | 5.85 × 10−1 | 1.37 × 10−1 | 2.78 × 10−1 | 9.50 × 10−1 | 4.60 × 10−2 | 4.04 × 10−3 |
Hybrid Model 1 Output | |||
---|---|---|---|
Data ID | K_CO2 | K_nC4 | K_nC10 |
1 | 1.94 × 10−0 | 3.02 × 10−1 | 7.13 × 10−3 |
2 | 2.10 × 10−0 | 2.89 × 10−1 | 5.23 × 10−3 |
3 | 2.45 × 10−0 | 2.78 × 10−1 | 3.23 × 10−3 |
4 | 1.87 × 10−0 | 2.96 × 10−1 | 7.16 × 10−3 |
5 | 1.87 × 10−0 | 2.94 × 10−1 | 7.01 × 10−3 |
6 | 1.16 × 10−0 | 6.01 × 10−1 | 1.50 × 10−1 |
7 | 2.11 × 10−0 | 3.23 × 10−1 | 7.63 × 10−3 |
8 | 2.91 × 10−0 | 3.04 × 10−1 | 2.94 × 10−3 |
… | … | … | … |
3999 | 2.38 × 10−0 | 2.87 × 10−1 | 3.89 × 10−3 |
4000 | 1.62 × 10−0 | 3.35 × 10−1 | 1.45 × 10−2 |
References
- Li, L.; Khorsandi, S.; Johns, R.T.; Dilmore, R.M. CO2 enhanced oil recovery and storage using a gravity-enhanced process. Int. J. Greenh. Gas Control. 2015, 42, 502–515. [Google Scholar] [CrossRef]
- Magzymov, D.; Dindoruk, B.; Johns, R.T. Carbon Capture, Utilization, and Storage in the Context of Petroleum Industry: A State-of-the-art Review. In Proceedings of the SPE Improved Oil Recovery Conference, Virtual, 25–29 April 2022. [Google Scholar] [CrossRef]
- Dindoruk, B.; Johns, R.T.; Orr, F.M., Jr. Measurement and Calculation of Minimum Miscibility Pressure: A State of the Art Review. SPE Reserv. Eval. Eng. 2021, 24, 367–389. [Google Scholar] [CrossRef]
- Sinha, U.; Dindoruk, B.; Soliman, M. Prediction of CO2 Minimum Miscibility Pressure (MMP) Using Machine Learning Techniques. In Proceedings of the SPE Improved Oil Recovery Conference, Virtual, 31 August–1 September 2020; p. SPE 200326-PA. [Google Scholar]
- Michelsen, M.L. The isothermal flash problem. Part I. Stability. Fluid Phase Equilibria 1982, 9, 1–19. [Google Scholar] [CrossRef]
- Young, L.C.; Stephenson, R.E. A generalized compositional approach for reservoir simulation. Soc. Pet. Eng. J. 1983, 23, 727–742. [Google Scholar] [CrossRef]
- Michelsen, M.L.; Mollerup, J.M. Thermodynamic Models: Fundamentals and Computational Aspects; Tie-Line Press: Kokkedal, Denmark, 2004. [Google Scholar]
- Gaganis, V.; Varotsis, N. Non-iterative phase stability calculations for process simulation using discriminating functions. Fluid Phase Equilibria 2012, 314, 69–77. [Google Scholar] [CrossRef]
- Danesh, A. PVT and Phase Behaviour of Petroleum Reservoir Fluids; Elsevier Science Ltd.: Oxford, UK, 1998. [Google Scholar]
- Rachford, H.H.; Rice, J.D. Procedure for Use of Electronic Digital Computers in Calculating Flash Vaporization Hydrocarbon Equilibrium. J. Pet. Technol. 1952, 4, 19. [Google Scholar] [CrossRef]
- Robinson, D.B.; Peng, D.Y. The Characterization of the Heptanes and Heavier Fractions for the GPA Peng–Robinson Programs; Research Report RR-28; Gas Processors Association: Tulsa, OK, USA, 1978. [Google Scholar]
- Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27, 1197–1203. [Google Scholar] [CrossRef]
- Michelsen, M.L. Simplified flash calculations for cubic equations of state. Ind. Eng. Chem. Process. Des. Dev. 1986, 25, 184–188. [Google Scholar] [CrossRef]
- Hendriks, E.; Van Bergen, A. Application of a reduction method to phase equilibria calculations. Fluid Phase Equilibria 1992, 74, 17–34. [Google Scholar] [CrossRef]
- Okuno, R.; Johns, R.T.; Sepehrnoori, K. Application of a reduced method in compositional simulation. SPE J. 2010, 15, 39–49. [Google Scholar] [CrossRef]
- Voskov, D.V.; Tchelepi, H.A. Compositional space parameterization: Multicontact miscible displacements and extension to multiple phases. SPE J. 2009, 14, 441–449. [Google Scholar] [CrossRef]
- Belkadi, A.; Yan, W.; Michelsen, M.L.; Stenby, E.H. Comparison of two methods for speeding up flash calculations in compositional simulations. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 21–23 February 2011. [Google Scholar]
- Gaganis, V.; Varotsis, N. Machine learning methods to speed up compositional reservoir simulation. In Proceedings of the SPE Europec/EAGE Annual Conference, Copenhagen, Denmark, 4–7 June 2012. [Google Scholar]
- Kashinath, A.; Szulczewski, M.; Dogru, A. A fast algorithm for calculating isothermal phase behavior using machine learning. Fluid Phase Equilibria 2018, 465, 73–82. [Google Scholar] [CrossRef]
- Gaganis, V.; Varotsis, N. An integrated approach for rapid phase behavior calculations in compositional modeling. J. Pet. Sci. Eng. 2014, 118, 74–87. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Li, Y.; Sun, S.; Gao, X. A self-adaptive deep learning algorithm for accelerating multi-component flash calculation. Comput. Methods Appl. Mech. Eng. 2020, 369, 113207. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Sun, S. Acceleration of the NVT flash calculation for multicomponent mixtures using deep neural network models. Ind. Eng. Chem. Res. 2019, 58, 12312–12322. [Google Scholar] [CrossRef]
- Sheth, S.; Heidari, M.R.; Neylon, K.; Bennett, J.; McKee, F. Acceleration of thermodynamic computations in fluid flow applications. Comput. Geosci. 2022, 26, 1–11. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Sun, S.; Bai, H. Accelerating flash calculations in unconventional reservoirs considering capillary pressure using an optimized deep learning algorithm. J. Pet. Sci. Eng. 2020, 195, 107886. [Google Scholar] [CrossRef]
- Chen, F.; Luo, S.; Wang, H.; Nasrabadi, S. A generalized machine learning-assisted phase-equilibrium calculation model for shale reservoirs. Fluid Phase Equilibria 2022, 558, 113423. [Google Scholar] [CrossRef]
- Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput. Phys. 2018, 357, 125–141. [Google Scholar] [CrossRef]
- Blechschmidt, J.; Ernst, O.G. Three ways to solve partial differential equations with neural networks—A review. GAMM-Mitteilungen 2021, 44, e202100006. [Google Scholar] [CrossRef]
- Arthurs, C.J.; King, A.P. Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to the Navier-Stokes equations. J. Comput. Phys. 2021, 438, 110364. [Google Scholar] [CrossRef] [PubMed]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Fraces, C.G.; Tchelepi, H. Physics informed deep learning for flow and transport in porous media. In Proceedings of the SPE Reservoir Simulation Conference, On-Demand, 4–6 October 2021. [Google Scholar]
- Magzymov, D.; Ratnakar, R.R.; Dindoruk, B.; Johns, R.T. Evaluation of machine learning methodologies using simple physics based conceptual models for flow in porous media. J. Pet. Sci. Eng. 2022, 219, 111056. [Google Scholar] [CrossRef]
- Ihunde, T.A.; Olorode, O. Application of physics informed neural networks to compositional modeling. J. Pet. Sci. Eng. 2022, 211, 110175. [Google Scholar] [CrossRef]
- Sun, R.; Pan, H.; Xiong, H.; Tchelepi, H. Physical-informed deep learning framework for CO2-injected EOR compositional simulation. Eng. Appl. Artif. Intell. 2023, 126, 106742. [Google Scholar] [CrossRef]
- Wang, K.; Luo, J.; Wei, Y.; Wu, K.; Li, J.; Chen, Z. Practical application of machine learning on fast phase equilibrium calculations in compositional reservoir simulations. J. Comput. Phys. 2020, 401, 109013. [Google Scholar] [CrossRef]
- Chen, F.; Luo, S.; Wang, S.; Nasrabadi, H. A Novel Machine-Learning Assisted Phase-Equilibrium Calculation Model for Liquid-Rich Shale Reservoirs. In Proceedings of the SPE Reservoir Simulation Conference, Galveston, TX, USA, 28–30 March 2023. [Google Scholar] [CrossRef]
Pc (atm) | Tc (K) | ω | |
---|---|---|---|
carbon dioxide (CO2) | 72.8 | 304.2 | 0.225 |
n-butane (C4) | 37.5 | 425.2 | 0.193 |
n-decane (C10) | 20.8 | 617.6 | 0.49 |
interaction coefficients | carbon dioxide (CO2) | n-butane (C4) | n-decane (C10) |
carbon dioxide (CO2) | 0 | 0.115 | 0.115 |
n-butane (C4) | 0.115 | 0 | 0.012 |
n-decane (C10) | 0.115 | 0.012 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magzymov, D.; Makhatova, M.; Dairov, Z.; Syzdykov, M. Evaluation of Machine Learning Applications for the Complex Near-Critical Phase Behavior Modelling of CO2–Hydrocarbon Systems. Appl. Sci. 2024, 14, 11140. https://doi.org/10.3390/app142311140
Magzymov D, Makhatova M, Dairov Z, Syzdykov M. Evaluation of Machine Learning Applications for the Complex Near-Critical Phase Behavior Modelling of CO2–Hydrocarbon Systems. Applied Sciences. 2024; 14(23):11140. https://doi.org/10.3390/app142311140
Chicago/Turabian StyleMagzymov, Daulet, Meruyert Makhatova, Zhasulan Dairov, and Murat Syzdykov. 2024. "Evaluation of Machine Learning Applications for the Complex Near-Critical Phase Behavior Modelling of CO2–Hydrocarbon Systems" Applied Sciences 14, no. 23: 11140. https://doi.org/10.3390/app142311140
APA StyleMagzymov, D., Makhatova, M., Dairov, Z., & Syzdykov, M. (2024). Evaluation of Machine Learning Applications for the Complex Near-Critical Phase Behavior Modelling of CO2–Hydrocarbon Systems. Applied Sciences, 14(23), 11140. https://doi.org/10.3390/app142311140