Multimodal Video Analysis for Crowd Anomaly Detection Using Open Access Tourism Cameras
<p>Original and background frames shown before and after applying CLAHE processing and grayscale transformation.</p> "> Figure 2
<p>SSIM comparison results. (<b>a</b>) Displays detections provided by Yolo. (<b>b</b>) Shows various cutouts from the background frame corresponding to examples of a false positive, a false negative, and a true positive, respectively. (<b>c</b>) Presents cutouts from the original frame representing examples of a false positive, a false negative, and a true positive, respectively.</p> "> Figure 3
<p>Weekly distribution of median detection series. <span class="html-italic">X</span>-axis in intervals of 15 min.</p> "> Figure 4
<p>Weekly distribution of IQR detection series. <span class="html-italic">X</span>-axis in intervals of 15 min.</p> "> Figure 5
<p>Augmented detection series.</p> "> Figure 6
<p>Weekly distribution of the median of the heatmap series. <span class="html-italic">X</span>-axis in intervals of 15 min.</p> "> Figure 7
<p>Weekly distribution of the standard deviation of the heatmap series. <span class="html-italic">X</span>-axis in intervals of 15 min.</p> "> Figure 8
<p>Augmented heatmap saturation percentage series.</p> "> Figure 9
<p>Diagram of the employed methodology.</p> "> Figure 10
<p>STL decomposition of the detection series.</p> "> Figure 11
<p>STL decomposition of the heatmap saturation percentage series.</p> "> Figure 12
<p>Trend threshold in detection series.</p> "> Figure 13
<p>Trend threshold in heatmap saturation percenteage series.</p> "> Figure 14
<p>Plot of detection residual with point anomalies.</p> "> Figure 15
<p>Justification of anomalies in detection series. (<b>a</b>) 11 October 2023 10:15:00 (Anomaly). (<b>b</b>) 4 October 2023 10:15:00 (Previous week). (<b>c</b>) 20 September 2023 10:15:00 (3 weeks earlier).</p> "> Figure 16
<p>Plot of heatmap saturation percentage residual with point anomalies.</p> "> Figure 17
<p>Justification of anomalies in heatmap series. (<b>a</b>) 1 October 2023 10:45:00 (Previous day) [0.001601]. (<b>b</b>) 2 October 2023 10:45:00 (Anomaly) [0.012045]. (<b>c</b>) 3 October 2023 10:45:00 (Next day) [0.008394].</p> ">
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Source of the Data
3.2. Data Acquisition
3.3. Data Processing
3.4. Generating the Time Series
3.4.1. Detection Series
3.4.2. Heatmap Saturation Percentage Series
3.5. Methodology
3.5.1. STL Decomposition
3.5.2. Collective Anomalies—Trend Threshold
3.5.3. Point Anomalies—SESD (Seasonal ESD)
4. Results
4.1. STL Decomposition
4.1.1. Detection Series
4.1.2. Heatmap Saturation Percentage Series
4.2. Collective Anomalies—Trend Threshold
4.2.1. Detection Series
4.2.2. Heatmap Saturation Percentage Series
4.2.3. Comparison with PySAD
4.3. Point Anomalies—SESD (Seasonal ESD)
4.3.1. Detection Series
4.3.2. Heatmap Saturation Percentage Series
4.3.3. Comparison with PySAD
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, C.; Sun, S.; Zhao, J. MST-GAT: A multimodal spatial–temporal graph attention network for time series anomaly detection. Inf. Fusion 2023, 89, 527–536. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, W.; Wang, Q.; Yu, L.; Ji, T.; Li, P. Multidimensional Time Series Anomaly Detection: A GRU-based Gaussian Mixture Variational Autoencoder Approach. In Proceedings of the 10th Asian Conference on Machine Learning, Beijing, China, 14–16 November 2018; Proceedings of Machine Learning Research, PMLR. Volume 95, pp. 97–112. [Google Scholar]
- Nedelkoski, S.; Cardoso, J.; Kao, O. Anomaly Detection from System Tracing Data Using Multimodal Deep Learning. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019; pp. 179–186. [Google Scholar] [CrossRef]
- Shaukat, K.; Alam, T.M.; Luo, S.; Shabbir, S.; Hameed, I.A.; Li, J.; Abbas, S.K.; Javed, U. A Review of Time-Series Anomaly Detection Techniques: A Step to Future Perspectives. In Advances in Information and Communication; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 865–877. [Google Scholar] [CrossRef]
- Ren, H.; Xu, B.; Wang, Y.; Yi, C.; Huang, C.; Kou, X.; Xing, T.; Yang, M.; Tong, J.; Zhang, Q. Time-Series Anomaly Detection Service at Microsoft. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 3009–3017. [Google Scholar] [CrossRef]
- Laptev, N.; Amizadeh, S.; Flint, I. Generic and Scalable Framework for Automated Time-series Anomaly Detection. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 1939–1947. [Google Scholar] [CrossRef]
- Geiger, A.; Liu, D.; Alnegheimish, S.; Cuesta-Infante, A.; Veeramachaneni, K. TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 33–43. [Google Scholar] [CrossRef]
- Xu, J.; Wu, H.; Wang, J.; Long, M. Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. arXiv 2022, arXiv:2110.02642. [Google Scholar] [CrossRef]
- Xue, R.; Chen, J.; Fang, Y. Real-Time Anomaly Detection and Feature Analysis Based on Time Series for Surveillance Video. In Proceedings of the 2020 5th International Conference on Universal Village (UV), Boston, MA, USA, 19–22 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Nazir, A.; Mitra, R.; Sulieman, H.; Kamalov, F. Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention. Sensors 2023, 23, 5811. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, J. Enhanced Abandoned Object Detection through Adaptive Dual-Background Modeling and SAO-YOLO Integration. Sensors 2024, 24, 6572. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Li, J.; Tu, T.; Peng, Y.; Jiang, J. Towards Efficient Video Detection Object Super-Resolution with Deep Fusion Network for Public Safety; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; Volume 2021, p. 9999398. [Google Scholar] [CrossRef]
- Gündüz, M.Ş.; Işık, G. A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models. J. Real-Time Image Process. 2023, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, Z.; Van Der Heijden, F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 2006, 27, 773–780. [Google Scholar] [CrossRef]
- Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, Cambridge, UK, 23–26 August 2004; Volume 2, pp. 28–31. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 24 November 2024).
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vision, Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Pizer, S.; Johnston, R.; Ericksen, J.; Yankaskas, B.; Muller, K. Contrast-limited adaptive histogram equalization: Speed and effectiveness. In Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, USA, 22–25 May 1990; pp. 337–345. [Google Scholar] [CrossRef]
- Zuiderveld, K.J. Contrast Limited Adaptive Histogram Equalization. In Graphics Gems; Heckbert, P.S., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 474–485. [Google Scholar]
- Wang, Z.; Bovik, A. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Tocher, K.D.; Gumbel, E.J. Statistical Theory of Extreme Values and Some Practical Applications. J. R. Stat. Soc. Ser. A (Gen.) 1955, 118, 106. [Google Scholar] [CrossRef]
- Kolmogorov–Smirnov Test. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 283–287. [CrossRef]
- Kotz, S.; Kozubowski, T.J.; Podgórski, K. The Laplace Distribution and Generalizations; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Hochenbaum, J.; Vallis, O.S.; Kejariwal, A. Automatic Anomaly Detection in the Cloud Via Statistical Learning. arXiv 2017, arXiv:1704.07706. [Google Scholar]
- Rosner, B. Percentage Points for a Generalized ESD Many-Outlier Procedure. Technometrics 1983, 25, 165. [Google Scholar] [CrossRef]
- Grubbs, F.E. Sample criteria for testing outlying observations. Ann. Math. Statist. 1950, 21, 27–58. [Google Scholar] [CrossRef]
- Yilmaz, S.F.; Kozat, S.S. PySAD: A Streaming Anomaly Detection Framework in Python. arXiv 2020, arXiv:2009.02572. [Google Scholar]
- Zhao, Y.; Nasrullah, Z.; Li, Z. PyOD: A Python Toolbox for Scalable Outlier Detection. arXiv 2019, arXiv:1901.01588. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hardin, J.; Rocke, D.M. Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Comput. Stat. Data Anal. 2004, 44, 625–638. [Google Scholar] [CrossRef]
- Schölkopf, B.; Williamson, R.C.; Smola, A.J.; Shawe-Taylor, J.; Platt, J.C. Support Vector Method for Novelty Detection. Adv. Neural Inf. Process. Syst. 1999, 12, 582–588. [Google Scholar]
PySAD | Trend Threshold + SESD (Ours) | Cohen’s Kappa Score | |
---|---|---|---|
Detection Series | 617 | 545 | 0.7445 |
Heatmap Series | 964 | 582 | 0.4726 |
PySAD | Trend Threshold + SESD (Ours) | Cohen’s Kappa Score | |
---|---|---|---|
Detection Series | 14 | 545 | 0.0287 |
Heatmap Series | 19 | 582 | 0.0289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionis-Ros, A.; Vila-Francés, J.; Magdalena-Benedito, R.; Mateo, F.; Serrano-López, A.J. Multimodal Video Analysis for Crowd Anomaly Detection Using Open Access Tourism Cameras. Appl. Sci. 2024, 14, 11075. https://doi.org/10.3390/app142311075
Dionis-Ros A, Vila-Francés J, Magdalena-Benedito R, Mateo F, Serrano-López AJ. Multimodal Video Analysis for Crowd Anomaly Detection Using Open Access Tourism Cameras. Applied Sciences. 2024; 14(23):11075. https://doi.org/10.3390/app142311075
Chicago/Turabian StyleDionis-Ros, Alejandro, Joan Vila-Francés, Rafael Magdalena-Benedito, Fernando Mateo, and Antonio J. Serrano-López. 2024. "Multimodal Video Analysis for Crowd Anomaly Detection Using Open Access Tourism Cameras" Applied Sciences 14, no. 23: 11075. https://doi.org/10.3390/app142311075
APA StyleDionis-Ros, A., Vila-Francés, J., Magdalena-Benedito, R., Mateo, F., & Serrano-López, A. J. (2024). Multimodal Video Analysis for Crowd Anomaly Detection Using Open Access Tourism Cameras. Applied Sciences, 14(23), 11075. https://doi.org/10.3390/app142311075