Effects of Different Exercise Doses Through an Augmented Reality Exergame in Older Adults: A Pilot Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Intervention
2.4. Outcomes
2.5. Procedure
2.6. Sample Size
2.7. Randomization and Blinding
2.8. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Main Results
3.3. Correlations
4. Discussion
4.1. Implications for Practice and Future Research
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oh, Y.; Yang, S. Defining Exergames & Exergaming. Proc. Meaningful Play 2010, 2010, 21–23. [Google Scholar]
- Giggins, O.M.; Persson, U.M.C.; Caulfield, B. Biofeedback in Rehabilitation. J. Neuroeng. Rehabil. 2013, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Granizo, I.A.; Ubago-Jiménez, J.L.; González-Valero, G.; Puertas-Molero, P.; Román-Mata, S.S. The Effect of Physical Activity and the Use of Active Video Games: Exergames in Children and Adolescents: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4243. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, T.B.F.; De Medeiros, C.S.P.; De Oliveira, V.H.B.; Vieira, E.R.; De Cavalcanti, F.A.C. Effectiveness of Exergames for Improving Mobility and Balance in Older Adults: A Systematic Review and Meta-Analysis. Syst. Rev. 2020, 9, 163. [Google Scholar] [CrossRef] [PubMed]
- Suleiman-Martos, N.; García-Lara, R.; Albendín-García, L.; Romero-Béjar, J.L.; Cañadas-De La Fuente, G.A.; Monsalve-Reyes, C.; Gomez-Urquiza, J.L. Effects of Active Video Games on Physical Function in Independent Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis. J. Adv. Nur.s 2022, 78, 1228–1244. [Google Scholar] [CrossRef]
- Berryman, D.R. Augmented Reality: A Review. Med. Ref. Serv. Q. 2012, 31, 212–218. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985, 100, 126. [Google Scholar]
- ACSM. Guidelines for Exercise Testing and Prescription 11th; ACSM: Indianapolis, IN, USA, 2021. [Google Scholar]
- Burnet, K.; Kelsch, E.; Zieff, G.; Moore, J.B.; Stoner, L. How Fitting Is F.I.T.T.?: A Perspective on a Transition from the Sole Use of Frequency, Intensity, Time, and Type in Exercise Prescription. Physiol. Behav. 2019, 199, 33–34. [Google Scholar] [CrossRef]
- Wasfy, M.M.; Baggish, A.L. Exercise Dose in Clinical Practice. Circulation 2016, 133, 2297–2313. [Google Scholar] [CrossRef]
- Scherr, J.; Wolfarth, B.; Christle, J.W.; Pressler, A.; Wagenpfeil, S.; Halle, M. Associations between Borg’s Rating of Perceived Exertion and Physiological Measures of Exercise Intensity. Eur. J. Appl. Physiol. 2013, 113, 147–155. [Google Scholar] [CrossRef]
- Stewart, T.H.; Villaneuva, K.; Hahn, A.; Ortiz-Delatorre, J.; Wolf, C.; Nguyen, R.; Bolter, N.D.; Kern, M.; Bagley, J.R. Actual vs. Perceived Exertion during Active Virtual Reality Game Exercise. Front. Rehabil. Sci. 2022, 3, 887740. [Google Scholar] [CrossRef] [PubMed]
- Neumann, D.L.; Moffitt, R.L. Affective and Attentional States When Running in a Virtual Reality Environment. Sports 2018, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, A.; Lund, H.; Stafne, S.N.; Ipsen, T.; Goldschmidt, C.L.; Jørgensen, C.T.; Juhl, C.B. Adverse Events of Exercise Therapy in Randomised Controlled Trials: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2020, 54, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Fiuza-Luces, C.; Garatachea, N.; Berger, N.A.; Lucia, A. Exercise Is the Real Polypill. Physiology 2013, 28, 330–358. [Google Scholar] [CrossRef] [PubMed]
- Kasiakogias, A.; Sharma, S. Exercise: The Ultimate Treatment to All Ailments? Clin. Cardiol. 2020, 43, 817–826. [Google Scholar] [CrossRef]
- Ning, H.; Jiang, D.; Du, Y.; Li, X.; Zhang, H.; Wu, L.; Chen, X.; Wang, W.; Huang, J.; Feng, H. Older Adults’ Experiences of Implementing Exergaming Programs: A Systematic Review and Qualitative Meta-Synthesis. Age Ageing 2022, 51, afac251. [Google Scholar] [CrossRef]
- Rytterström, P.; Strömberg, A.; Jaarsma, T.; Klompstra, L. Exergaming to Increase Physical Activity in Older Adults: Feasibility and Practical Implications. Curr. Heart Fail. Rep. 2024, 21, 439–459. [Google Scholar] [CrossRef]
- Woolley, K.; Fishbach, A. Immediate Rewards Predict Adherence to Long-Term Goals. Pers. Soc. Psychol. Bull. 2017, 43, 151–162. [Google Scholar] [CrossRef]
- Bethancourt, H.J.; Rosenberg, D.E.; Beatty, T.; Arterburn, D.E. Barriers to and Facilitators of Physical Activity Program Use among Older Adults. Clin. Med. Res. 2014, 12, 10–20. [Google Scholar] [CrossRef]
- Rivera-Torres, S.; Fahey, T.D.; Rivera, M.A. Adherence to Exercise Programs in Older Adults: Informative Report. Gerontol. Geriatr. Med. 2019, 5, 233372141882360. [Google Scholar] [CrossRef]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. BMJ 2010, 340, 701–741. [Google Scholar] [CrossRef] [PubMed]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR Interval Signal Quality of a Heart Rate Monitor and an ECG Holter at Rest and during Exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Perceived Exertion as an Indicator of Somatic Stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Lea, J.W.D.; O’Driscoll, J.M.; Hulbert, S.; Scales, J.; Wiles, J.D. Convergent Validity of Ratings of Perceived Exertion During Resistance Exercise in Healthy Participants: A Systematic Review and Meta-Analysis. Sports Med. Open 2022, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Fan, X.; Moe, S.T. Criterion-Related Validity of the Borg Ratings of Perceived Exertion Scale in Healthy Individuals: A Meta-Analysis. J. Sports Sci. 2002, 20, 873–899. [Google Scholar] [CrossRef]
- Hooper, S.L.; Mackinnon, L.T.; Howard, A.; Gordon, R.D.; Bachmann, A.W. Markers for Monitoring Overtraining and Recovery. Med. Sci. Sports Exerc. 1995, 27, 106–112. [Google Scholar] [CrossRef]
- Moreno, J.A.; González-Cutre, D.; Martínez, C.; Alonso, N.; López, M. Propiedades Psicométricas de La Physical Activity Enjoyment Scale (PACES) En El Contexto Español. Estud. Psicol. 2008, 29, 173–180. [Google Scholar] [CrossRef]
- Kendzierski, D.; DeCarlo, K.J. Physical Activity Enjoyment Scale: Two Validation Studies. J. Sport Exerc.Psychol. 1991, 13, 50–64. [Google Scholar] [CrossRef]
- Mukaka, M.M. A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69. [Google Scholar]
- MacIntosh, B.R.; Murias, J.M.; Keir, D.A.; Weir, J.M. What Is Moderate to Vigorous Exercise Intensity? Front. Physiol. 2021, 12, 682233. [Google Scholar] [CrossRef]
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; Aubertin-Leheudre, M.; Bernabei, R.; Cadore, E.L.; Cesari, M.; et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J. Nutr. Health Aging 2021, 25, 824–853. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.E.; Moore, S.C.; Sampson, J.; Blair, A.; Xiao, Q.; Keadle, S.K.; Hollenbeck, A.; Park, Y. Mortality Benefits for Replacing Sitting Time with Different Physical Activities. Med. Sci. Sports Exerc. 2015, 47, 1833. [Google Scholar] [CrossRef]
- Chen, X.; Wu, L.; Feng, H.; Ning, H.; Wu, S.; Hu, M.; Jiang, D.; Chen, Y.; Jiang, Y.; Liu, X. Comparison of Exergames Versus Conventional Exercises on the Health Benefits of Older Adults: Systematic Review With Meta-Analysis of Randomized Controlled Trials. JMIR Serious Games 2023, 11, e42374. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, L.; Parfitt, G.C.; Eston, R.G.; Gray, C.; Keage, H.A.D.; Smith, A.E. Combining Perceptual Regulation and Exergaming for Exercise Prescription in Low-Active Adults with and without Cognitive Impairment. BMC Sports Sci. Med. Rehabil. 2018, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Glen, K.; Eston, R.; Loetscher, T.; Parfitt, G. Exergaming: Feels Good despite Working Harder. PLoS ONE 2017, 12, e0186526. [Google Scholar] [CrossRef] [PubMed]
- Röglin, L.; Ketelhut, S.; Ketelhut, K.; Kircher, E.; Ketelhut, R.G.; Martin-Niedecken, A.L.; Hottenrott, K.; Stoll, O. Adaptive High-Intensity Exergaming: The More Enjoyable Alternative to Conventional Training Approaches Despite Working Harder. Games Health J. 2021, 10, 400–407. [Google Scholar] [CrossRef]
- Ekkekakis, P. Pleasure and Displeasure from the Body: Perspectives from Exercise. Cogn. Emot. 2003, 17, 213–239. [Google Scholar] [CrossRef]
- Tenenbaum, G.; Hutchinson, J.C. A Social-Cognitive Perspective of Perceived and Sustained Effort. In Handbook of Sport Psychology, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 560–577. [Google Scholar] [CrossRef]
- Leventhal, H.; Everhart, D. Emotion, Pain, and Physical Illness. In Emotions in Personality and Psychopathology; Springer: Boston, MA, USA, 1979; pp. 261–299. [Google Scholar] [CrossRef]
- Moalla, W.; Fessi, M.S.; Farhat, F.; Nouira, S.; Wong, D.P.; Dupont, G. Relationship between Daily Training Load and Psychometric Status of Professional Soccer Players. Res. Sports Med. 2016, 24, 387–394. [Google Scholar] [CrossRef]
- Pexa, B.S.; Johnston, C.J.; Taylor, J.B.; Ford, K.R. Training Load and Current Soreness Predict Future Delayed Onset Muscle Soreness in Collegiate Female Soccer Athletes. Int. J. Sports Phys. Ther. 2023, 18, 1271. [Google Scholar] [CrossRef]
- Armstrong, R.B. Mechanisms of Exercise-Induced Delayed Onset Muscular Soreness: A Brief Review. Med. Sci. Sports Exerc. 1984, 16, 529–538. [Google Scholar] [CrossRef]
- Soltani, P.; Figueiredo, P.; Vilas-Boas, J.P. Does Exergaming Drive Future Physical Activity and Sport Intentions? J. Health Psychol. 2020, 26, 2173–2185. [Google Scholar] [CrossRef] [PubMed]
Group 1 (n = 16) | Group 2 (n = 16) | p Value | |
---|---|---|---|
Age (yr), mean (SD) | 90.06 (4.81) | 84.81 (6.25) | p = 0.06 * |
Gender | M: 9 (56.25%) | M: 7 (43.75%) | p = 0.48 ** |
Height (m), mean (SD) | 1.61 (0.11) | 1.64 (0.1) | p= 0.181 * |
Weight (kg), mean (SD) | 72.52 (12.69) | 72.16 (16.13) | p = 0.48 * |
BMI (kg/m2), mean (SD) | 27.85 (4.18) | 26.54 (4.12) | p = 0.158 * |
Group 1 Mean (SD) (95% CI) | Group 2 Mean (SD) (95% CI) | p Value | |
---|---|---|---|
Min HR (bpm) | 72.13 (13.4) | 67.94 (9.45) | p = 0.158 * |
Mean HR (bpm) | 85.83 (15.9) | 86.75 (11.59) | p = 0.391 * |
Max HR (bpm) | 98.13 (17.67) | 105.75 (15.2) | p = 0.1 * |
Half-time RPE (6–20) | 9.53 (2.12) | 9.31 (2.182) | p = 0.626 ** |
End-time RPE (6–20) | 11.2 (2.65) | 11.5 (2.83) | p = 0.74 ** |
Total time mean (SD) | 0:13:08 (0:00:48) | 0:27:55 (0:00:57) | p < 0.01 ** |
Enjoyment PACES | 35.13 (5.24) | 36.94 (4.39) | p = 0.287 ** |
Non-enjoyment PACES | 11.62 (4.91) | 10.31 (3.03) | p = 0.616 ** |
Adverse effects | 1.44 (0.96) | 1.81 (0.83) | p = 0.287 ** |
Fatigue 24 h mean | 1.69 (1.45) | 1.31 (0.87) | p = 0.564 ** |
Fatigue 48 h mean | 1.31 (0.873) | 1.19 (0.54) | p = 0.956 ** |
DOMS 24 h mean (SD) | 1.69 (1.01) | 1.94 (1.12) | p = 0.539 ** |
DOMS 48 h mean (SD) | 1.25 (0.58) | 1.19 (0.4) | p = 0.956 ** |
Enjoyment PACES | Non-Enjoyment PACES | ||
---|---|---|---|
Groups 1 and 2 | Half-time RPE | rs = −0.359 * | rs = −0.249 |
End-time RPE | rs = −0.193 | rs = −0.181 | |
Group 1 | Half-time RPE | rs = −0.281 | rs = −0.01 |
End-time RPE | rs = −0.256 | rs = −0.063 | |
Group 2 | Half-time RPE | rs = −0.434 | rs = 0.471 |
End-time RPE | rs = −0.194 | rs = 0.401 |
Adverse Effects | Fatigue 24 h | Fatigue 48 h | DOMS 24 h | DOMS 48 h | ||
---|---|---|---|---|---|---|
Groups 1 and 2 | Total time | rs = 0.295 | rs = −0.156 | rs = −0.08 | rs = 0.176 | rs = 0.05 |
End-time RPE | rs = 0.627 ** | rs = 0.424 * | rs = 0.445 * | rs = 0.422 * | rs = 0.301 | |
Group 1 | Total time | rs = 0.598 * | rs = 0.129 | rs = −0.095 | rs = 0.328 | rs = −0.039 |
End-time RPE | rs = 0.762 ** | rs = 0.739 ** | rs = 0.499 | rs = 0.419 | rs = 0.093 | |
Group 2 | Total time | rs = −0.178 | rs = −0.253 | rs = −0.177 | rs = −0.02 | rs = 0.313 |
End-time RPE | rs = 0.484 | rs = 0.09 | rs = 0.397 | rs = 0.408 | rs = 0.542 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo-Aparicio, J.; Domínguez-López, P.; Díaz-González, C.; Martín-Caro Álvarez, D.; Álvarez, D.M.-C.; Beltran-Alacreu, H. Effects of Different Exercise Doses Through an Augmented Reality Exergame in Older Adults: A Pilot Randomized Controlled Trial. Appl. Sci. 2024, 14, 10592. https://doi.org/10.3390/app142210592
Bravo-Aparicio J, Domínguez-López P, Díaz-González C, Martín-Caro Álvarez D, Álvarez DM-C, Beltran-Alacreu H. Effects of Different Exercise Doses Through an Augmented Reality Exergame in Older Adults: A Pilot Randomized Controlled Trial. Applied Sciences. 2024; 14(22):10592. https://doi.org/10.3390/app142210592
Chicago/Turabian StyleBravo-Aparicio, Javier, Patricia Domínguez-López, Cristina Díaz-González, Diego Martín-Caro Álvarez, David Martín-Caro Álvarez, and Hector Beltran-Alacreu. 2024. "Effects of Different Exercise Doses Through an Augmented Reality Exergame in Older Adults: A Pilot Randomized Controlled Trial" Applied Sciences 14, no. 22: 10592. https://doi.org/10.3390/app142210592
APA StyleBravo-Aparicio, J., Domínguez-López, P., Díaz-González, C., Martín-Caro Álvarez, D., Álvarez, D. M.-C., & Beltran-Alacreu, H. (2024). Effects of Different Exercise Doses Through an Augmented Reality Exergame in Older Adults: A Pilot Randomized Controlled Trial. Applied Sciences, 14(22), 10592. https://doi.org/10.3390/app142210592