Corner Reflector Plasmonic Nanoantennas for Enhanced Single-Photon Emission
<p>Geometry employed in the analyses. The feeder is composed by a dipole emitter <math display="inline"><semantics> <mi mathvariant="bold">p</mi> </semantics></math> coupled to a nanosphere of diameter <span class="html-italic">d</span>. The corner, of angle <math display="inline"><semantics> <mi>ψ</mi> </semantics></math>, is assumed to be built from to sheets of the same metal as the NP with dimensions <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>×</mo> <mi>H</mi> </mrow> </semantics></math>.</p> "> Figure 2
<p>Calculated resonance wavelengths of silver (<b>a</b>) and gold (<b>b</b>) NPs as a function of their diameters.</p> "> Figure 3
<p>Purcell, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>R</mi> </msub> </semantics></math>, and loss, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>L</mi> </msub> </semantics></math>, factors of silver NPs calculated for different spherical particle diameter values <span class="html-italic">d</span> and separation values <span class="html-italic">s</span> from the the dipole emitter. (<b>a</b>,<b>c</b>) plots are the values at resonance and, (<b>b</b>,<b>d</b>) are at the target wavelength of <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>A</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>450</mn> </mrow> </semantics></math> nm.</p> "> Figure 4
<p>Purcell, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>R</mi> </msub> </semantics></math>, and loss, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>L</mi> </msub> </semantics></math>, factors of gold NPs calculated for different spherical particle diameter values <span class="html-italic">d</span> and separation values <span class="html-italic">s</span> from the the dipole emitter. (<b>a</b>,<b>c</b>) plots are the values at resonance, and (<b>b</b>,<b>d</b>) are at the target wavelength of <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>A</mi> <mi>u</mi> </mrow> </msub> <mo>=</mo> <mn>600</mn> </mrow> </semantics></math> nm.</p> "> Figure 5
<p>Values of the directivity as a function of the feeder position <span class="html-italic">S</span>, normalized to the respective target wavelength, for four different reflector film thicknesses. (<b>a</b>) Results for the silver CR, with a target wavelength of <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>A</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mn>450</mn> </mrow> </semantics></math> nm. (<b>b</b>) Results for the gold CR, with a target wavelength of <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mrow> <mi>A</mi> <mi>u</mi> </mrow> </msub> <mo>=</mo> <mn>600</mn> </mrow> </semantics></math> nm.</p> "> Figure 6
<p>Radiation patterns of silver CR with <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> nm for values of <span class="html-italic">S</span> between <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Radiation patterns of silver CR with <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> nm for values of <span class="html-italic">S</span> between <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Radiation patterns of silver CR with <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> nm for values of <span class="html-italic">S</span> between <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Purcell, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>R</mi> </msub> </semantics></math>, and normalized loss, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>L</mi> </msub> </semantics></math>, factors of silver CR as a function of the normalized feeder position <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>/</mo> <msub> <mi>λ</mi> <mi>M</mi> </msub> </mrow> </semantics></math> for four different reflector film thicknesses: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> nm, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> nm, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> nm, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> nm. The horizontal lines describe the corresponding reference levels without the CR.</p> "> Figure 10
<p>Radiative transition rate enhancement, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>R</mi> </msub> </semantics></math>, and normalized loss, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>L</mi> </msub> </semantics></math>, factors of gold CR as a function of the normalized feeder position <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>/</mo> <msub> <mi>λ</mi> <mi>M</mi> </msub> </mrow> </semantics></math> for four different reflector film thicknesses: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> nm, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> nm, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> nm, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> nm.</p> "> Figure 11
<p>Radiation efficiency of silver (<b>a</b>) and gold (<b>b</b>) CR NA as a function of the normalized feeder position <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>/</mo> <msub> <mi>λ</mi> <mi>M</mi> </msub> </mrow> </semantics></math> for four different reflector film thicknesses <span class="html-italic">W</span>.</p> "> Figure 12
<p>Directivity of silver (<b>a</b>) and gold (<b>b</b>) CR antennas with and without NP coupled to the dipole emitter. Purcell (<math display="inline"><semantics> <msub> <mi>f</mi> <mi>R</mi> </msub> </semantics></math>) and loss (<math display="inline"><semantics> <msub> <mi>f</mi> <mi>L</mi> </msub> </semantics></math>) factors for silver (<b>c</b>) and gold (<b>d</b>) CRs with a single dipole emitter feeder.</p> "> Figure 13
<p>Calculated resonance wavelengths of silver (<b>a</b>) and gold (<b>b</b>) NPs as a function of the absolute feeder position <span class="html-italic">S</span> for four different reflector film thicknesses: <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> nm, <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> nm, <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> nm, and <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> nm.</p> "> Figure 14
<p>Field strength <math display="inline"><semantics> <mrow> <mo>|</mo> <mi mathvariant="bold">E</mi> <mo>|</mo> </mrow> </semantics></math> across the <math display="inline"><semantics> <mrow> <mi>X</mi> <mi>Z</mi> </mrow> </semantics></math> plane in the environment of a <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>70</mn> </mrow> </semantics></math> nm gold NP at the origin illuminated by an unit magnitude <span class="html-italic">Z</span>-polarized E-field plane wave. The plot (<b>a</b>) displays the results for the isolated NP and (<b>b</b>) when the NP was within the CR at <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m.</p> "> Figure 15
<p>(<b>a</b>) Purcell, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>R</mi> </msub> </semantics></math>, and loss, <math display="inline"><semantics> <msub> <mi>f</mi> <mi>L</mi> </msub> </semantics></math>, factors; (<b>b</b>) directivity of a <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> nm, <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m CR silver NA with the feeder at <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>0.55</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m in the presence of an interfering <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>70</mn> </mrow> </semantics></math> nm silver NP at position <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>ρ</mi> <mo form="prefix">sin</mo> <mo>(</mo> <mi>α</mi> <mo>)</mo> <mo>,</mo> <mi>ρ</mi> <mo form="prefix">cos</mo> <mo>(</mo> <mi>α</mi> <mo>)</mo> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </semantics></math> for different values of <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 16
<p>Values obtained of the directivity as a function of the feeder position <span class="html-italic">S</span> normalized to the corresponding target wavelength for three different reflector film thicknesses when the length of the CR planes was increased to <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m. (<b>a</b>) Results for silver CR. (<b>b</b>) Results for gold CR.</p> "> Figure 17
<p>Radiative transition rate enhancement <math display="inline"><semantics> <msub> <mi>f</mi> <mi>R</mi> </msub> </semantics></math> and normalized loss <math display="inline"><semantics> <msub> <mi>f</mi> <mi>L</mi> </msub> </semantics></math> factors of a gold CR with <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m as a function of the feeder position <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>/</mo> <msub> <mi>λ</mi> <mi>M</mi> </msub> </mrow> </semantics></math> for three different reflector film thicknesses: (<b>a</b>) silver CR <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> nm, (<b>b</b>) gold CR <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> nm, (<b>c</b>) silver CR <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> nm, (<b>d</b>) gold CR <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> nm, (<b>e</b>) silver CR <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> nm, (<b>f</b>) gold CR <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics></math> nm.</p> "> Figure 18
<p>Nanoantenna gain as a function of the feeder position <span class="html-italic">S</span> normalized to the corresponding target wavelength for three different reflector film thicknesses when the length of the CR planes was increased to <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m. (<b>a</b>) Results for silver CR. (<b>b</b>) Results for gold CR.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 2019, 82, 016001. [Google Scholar] [CrossRef] [PubMed]
- DiVincenzo, D.P. The physical implementation of quantum computation. Fortschr. Phys. 2000, 48, 771–783. [Google Scholar] [CrossRef]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Bogdanov, S.I.; Makarova, O.A.; Xu, X.; Martin, Z.O.; Lagutchev, A.S.; Olinde, M.; Shah, D.; Chowdhury, S.N.; Gabidullin, A.R.; Ryzhikov, I.A.; et al. Ultrafast quantum photonics enabled by coupling plasmonic nanocavities to strongly radiative antennas. Optica 2020, 7, 463–469. [Google Scholar] [CrossRef]
- Toninelli, C.; Gerhardt, I.; Clark, A.S.; Reserbat-Plantey, A.; Götzinger, S.; Ristanović, Z.; Colautti, M.; Lombardi, P.; Major, K.D.; Deperasińska, I.; et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 2021, 20, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Dibos, A.M.; Raha, M.; Phenicie, C.M.; Thompson, J.D. Atomic Source of Single Photons in the Telecom Band. Phys. Rev. Lett. 2018, 120, 243601. [Google Scholar] [CrossRef]
- Gaither-Ganim, M.B.; Newlon, S.A.; Anderson, M.G.; Lee, B. Organic molecule single-photon sources. Oxf. Open Mater. Sci. 2023, 3, itac017. [Google Scholar] [CrossRef]
- Andersen, S.K.H.; Kumar, S.; Bozhevolnyi, S.I. Ultrabright Linearly Polarized Photon Generation from a Nitrogen Vacancy Center in a Nanocube Dimer Antenna. Nano Lett. 2017, 17, 3889–3895. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; James, P.; Stephen, K.G.; Lakowicz, J.R. Systematic Computational Study of the Effect of Silver Nanoparticle Dimers on the Coupled Emission from Nearby Fluorophores. J. Phys. Chem. C 2008, 112, 11236–11249. [Google Scholar] [CrossRef]
- Bogdanov, S.I.; Shalaginov, M.Y.; Lagutchev, A.S.; Chiang, C.-C.; Shah, D.; Baburin, A.S.; Ryzhikov, I.A.; Rodionov, I.A.; Kildishev, A.V.; Boltasseva, A.; et al. Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas. Nano Lett. 2018, 18, 4837–4844. [Google Scholar] [CrossRef]
- Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.; Moerner, W.E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657. [Google Scholar] [CrossRef]
- Novotny, L.; van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Taminiau, T.H.; Stefani, F.D.; van Hulst, N.F. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt. Express 2008, 16, 10858–10866. [Google Scholar] [CrossRef] [PubMed]
- Dorfmuller, J.; Dregely, D.; Esslinger, M.; Khunsin, W.; Vogelgesang, R.; Kern, K.; Giessen, H. Near-Field Dynamics of Optical Yagi-Uda Nanoantennas. Nano Lett. 2011, 11, 2819–2824. [Google Scholar] [CrossRef]
- Kraus, J.D.; Marhefka, R.J. Antennas for All Applications, 3rd ed.; MacGraw-Hill: Boston, MA, USA, 2002. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Kraus, J.D. The corner-reflector antenna. Proc. IRE 1940, 28, 513–519. [Google Scholar] [CrossRef]
- Chamorro-Posada, P. Corner Reflectors: Fractal Analysis and Integrated Single-Photon Sources. ACS Omega 2024, 9, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.S. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, AP-14, 302–307. [Google Scholar]
- Taflove, A.; Brodwin, M.E. Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equations. IEEE Trans. Microw. Theory Tech. 1975, 23, 623–630. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Purcell, E.M. Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev. 1946, 11–12, 681. [Google Scholar]
- Krasnok, A.E.; Slobozhanyuk, A.P.; Simovski, C.R.; Tretyakov, S.A.; Poddubny, A.N.; Miroshnichenko, A.E.; Kivshar, Y.S.; Belov, P.A. An antenna model for the Purcell effect. Sci. Rep. 2015, 5, 12956. [Google Scholar] [CrossRef]
- Kaminski, F.; Sandoghdar, V.; Agio, M. Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures. J. Comput. Theor. Nanosci. 2007, 4, 635–643. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Kildal, P.-S.; Martini, E.; Maci, S. Degrees of freedom and maximum directivity of antennas: A bound on maximum directivity of nonsuperreactive antennas. IEEE Antennas Propag. Mag. 2017, 59, 16–25. [Google Scholar] [CrossRef]
- Hansen, R.C. Fundamental limitations in antennas. Proc. IEEE 1981, 69, 170–182. [Google Scholar] [CrossRef]
- Chu, J.L. Physical Limitations of Omni-Directional Antennas. J. Appl. Phys. 1948, 19, 1163–1175. [Google Scholar] [CrossRef]
- Harrington, R.F. On the Gain and Beamwidth of Direccional Antennas. IRE Trans. Antennas Propag. 1958, 6, 219–225. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Simovski, C.R.; Belova, P.A.; Kivsha, Y.S. Superdirective dielectric nanoantennas. Nanoscale 2014, 6, 7354. [Google Scholar] [CrossRef]
- Gaponenko, R.; Sidorenko, M.S.; Zhirihin, D.; Rasskazov, I.L.; Moroz, A.; Ladutenko, K.; Belov, P.; Shcherbakov, A. Experimental demonstration of superdirective spherical dielectric antenna. J. Appl. Phys. 2023, 134, 014901. [Google Scholar] [CrossRef]
- Bozhevolnyi, S.I.; Khurgin, J.B. Fundamental limitations in spontaneous emission rate of single-photon sources. Optica 2016, 1418, 1418–1421. [Google Scholar] [CrossRef]
- Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L.M.; García de Abajo, F.J. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1792–1805. [Google Scholar] [CrossRef]
- Alqadi, M.K.; Abo Noqtah, O.A.; Alzoubi, F.Y.; Alzoubi, J.; Aljarrah, K. pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater. Sci.-Pol. 2014, 32, 107–111. [Google Scholar] [CrossRef]
- Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 172–176. [Google Scholar] [CrossRef]
- Cottony, H.V.; Wilson, A.C. Gains of Finite-Size Corner-Reflector Antennas. IRE Trans. Antennas Propag. 1958, 6, 366–369. [Google Scholar] [CrossRef]
- Fort, E.; Grésillon, S. Surface enhanced fluorescence. J. Phys. D Appl. Phys. 2008, 41, 013001. [Google Scholar] [CrossRef]
- Bell, S.E.J.; Charron, G.; Cortés, E.; Kneipp, J.; Lamy de la Chapelle, M.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angew. Chem. 2020, 59, 5454–5462. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamorro-Posada, P. Corner Reflector Plasmonic Nanoantennas for Enhanced Single-Photon Emission. Appl. Sci. 2024, 14, 10300. https://doi.org/10.3390/app142210300
Chamorro-Posada P. Corner Reflector Plasmonic Nanoantennas for Enhanced Single-Photon Emission. Applied Sciences. 2024; 14(22):10300. https://doi.org/10.3390/app142210300
Chicago/Turabian StyleChamorro-Posada, Pedro. 2024. "Corner Reflector Plasmonic Nanoantennas for Enhanced Single-Photon Emission" Applied Sciences 14, no. 22: 10300. https://doi.org/10.3390/app142210300
APA StyleChamorro-Posada, P. (2024). Corner Reflector Plasmonic Nanoantennas for Enhanced Single-Photon Emission. Applied Sciences, 14(22), 10300. https://doi.org/10.3390/app142210300