Analysis of 3D Printed Dielectric Resonator Antenna Arrays for Millimeter-Wave 5G Applications
<p>Configuration of the FDM printed microwave DRA: (<b>a</b>) DRA on top of a metallic ground plane, (<b>b</b>) substrate and DRA made transparent to show the microstrip transmission line on the back of the substrate and the slot on the top ground plane.</p> "> Figure 2
<p>Zoom-in view of the top and bottom surfaces of the FDM-printed microwave DRA. (<b>a</b>) top view, (<b>b</b>) bottom view.</p> "> Figure 3
<p>2D cut surface profile of the FDM-printed DRA.</p> "> Figure 4
<p>3D side view and 2D cut surface profile of the FDM-printed DRA.</p> "> Figure 5
<p>Fabricated DRA. (<b>a</b>) top view, (<b>b</b>) bottom view.</p> "> Figure 6
<p>Simulated and measured <span class="html-italic">S</span><sub>11</sub> of the microwave DRA design. Adjusted dimensional parameters and permittivity were also taken into account based on the measured values.</p> "> Figure 7
<p>Configuration of the mmWave DRA array.</p> "> Figure 8
<p>Simulated efficiency and realized gain for mmWave DRA array.</p> "> Figure 9
<p>Beam scanning performance of the DRA array in (<b>a</b>) xz- and (<b>b</b>) yz-plane.</p> "> Figure 10
<p>Gain at broadside direction with different (<b>a</b>) radius, (<b>b</b>) height, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>, (<b>d</b>) tan <span class="html-italic">δ</span> of DRA element.</p> "> Figure 11
<p>Efficiency with different (<b>a</b>) radius, (<b>b</b>) height, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>ε</mi> </mrow> <mrow> <mi>r</mi> </mrow> </msub> </mrow> </semantics></math>, (<b>d</b>) tan <span class="html-italic">δ</span> of DRA element.</p> "> Figure 12
<p>Configuration of the DRA array with an in-phase feeding network.</p> "> Figure 13
<p>Photographs of the FDM 3D-printed DRA array with an in-phase feeding network. (<b>a</b>) top view, (<b>b</b>) bottom view.</p> "> Figure 14
<p>Zoom-in view of the top and bottom surfaces of the FDM 3D-printed mmWave DRA. (<b>a</b>) top view, (<b>b</b>) bottom view.</p> "> Figure 15
<p>2D cut surface profile of the FDM-printed mmWave DRA.</p> "> Figure 16
<p>3D side view and 2D cut surface profile of the FDM-printed mmWave DRA element.</p> "> Figure 17
<p>Simulated and measured matching performance of the FDM 3D-printed DRA array with in-phase feeding network.</p> "> Figure 18
<p>Simulated and measured radiation patterns of the FDM 3D-printed DRA array at 26.8 GHz. (<b>a</b>) xz- and (<b>b</b>) yz-plane.</p> "> Figure 19
<p>Simulated and measured realized gain at the broadside direction of the FDM 3D-printed DRA array.</p> "> Figure 20
<p>(<b>a</b>) Configuration of the DRA array, and (<b>b</b>) simulated efficiency and realized gain.</p> "> Figure 21
<p>Beam scanning performance of the cuboid DRA array in the (<b>a</b>) xz-, and (<b>b</b>) yz-planes.</p> "> Figure 22
<p>Top view of the FDM 3D-printed cuboid DRA element (<b>a</b>) before, and (<b>b</b>) after refining.</p> "> Figure 23
<p>Side view of the FDM 3D-printed cuboid DRA element (<b>a</b>) before, and (<b>b</b>) after refining.</p> ">
Abstract
:1. Introduction
2. 3D Printed DRA at Microwave Frequency
3. Millimeter-Wave DRA Array for 5G Systems
3.1. Parametric Analysis for 3D Printing Process
3.2. Fabrication and Measurements
3.3. Other Possible Solutions and Future Work
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahim, T.N.A.T.; Abdullah, A.M.; Md Akil, H. Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polym. Rev. 2019, 59, 589–624. [Google Scholar] [CrossRef]
- Long, S.; Mcallister, M.; Shen, L. The resonant cylindrical dielectric cavity antenna. IEEE Trans. Antennas Propag. 1983, 31, 406–412. [Google Scholar] [CrossRef]
- Shehbaz, M.; Du, C.; Zhou, D.; Xia, S.; Xu, Z. Recent progress in dielectric resonator antenna: Materials, designs, fabrications, and their performance. Appl. Phys. Rev. 2023, 10, 021303. [Google Scholar] [CrossRef]
- Liang, J.; Lu, W.-Z.; Wu, J.-M.; Guan, J.-G. Microwave dielectric properties of Li2TiO3 ceramics sintered at low temperatures. Mater. Sci. Eng. B 2011, 176, 99–102. [Google Scholar] [CrossRef]
- Haghzadeh, M.; Armiento, C.; Akyurtlu, A. All-Printed Flexible Microwave Varactors and Phase Shifters Based on a Tunable BST/Polymer. IEEE Trans. Microw. Theory Tech. 2017, 65, 2030–2042. [Google Scholar] [CrossRef]
- Lee, S.-E.; Choi, S.P.; Oh, K.-S.; Kim, J.; Lee, S.M.; Cho, K.R. Flexible Magnetic Polymer Composite Substrate with Ba1.5Sr1.5Z Hexaferrite Particles of VHF/Low UHF Patch Antennas for UAVs and Medical Implant Devices. Materials 2020, 13, 1021. [Google Scholar] [CrossRef]
- Kremer, H.I.; Leung, K.W.; Wong, W.C.; Lo, K.K.-W.; Lee, M.W.K. Design of Dielectric Resonator Antenna Using Dielectric Paste. Sensors 2021, 21, 4058. [Google Scholar] [CrossRef]
- Jang, D.; Lee, J.-Y.; Choo, H. Design of a Stacked Dual-Patch Antenna with 3D Printed Thick Quasi-Air Substrates and a Cavity Wall for Wideband Applications. Appl. Sci. 2024, 14, 1571. [Google Scholar] [CrossRef]
- Benkhadda, O.; Ahmad, S.; Saih, M.; Chaji, K.; Reha, A.; Ghaffar, A.; Khan, S.; Alibakhshikenari, M.; Limiti, E. Compact Broadband Antenna with Vicsek Fractal Slots for WLAN and WiMAX Applications. Appl. Sci. 2022, 12, 1142. [Google Scholar] [CrossRef]
- Lee, S.; Yang, Y.; Lee, K.-Y.; Jung, K.-Y.; Hwang, K. Robust Design of 3D-Printed 6–18 GHz Double-Ridged TEM Horn Antenna. Appl. Sci. 2018, 8, 1582. [Google Scholar] [CrossRef]
- Popela, M.; Olivová, J.; Plíva, Z.; Petržílka, L.; Krchová, M.; Joska, Z.; Janů, P. A Novel Approach to the Production of Printed Patch Antennas. Appl. Sci. 2024, 14, 1556. [Google Scholar] [CrossRef]
- Melchiorre, L.; Marasco, I.; Niro, G.; Basile, V.; Marrocco, V.; D’Orazio, A.; Grande, M. Bio-Inspired Dielectric Resonator Antenna for Wideband Sub-6 GHz Range. Appl. Sci. 2020, 10, 8826. [Google Scholar] [CrossRef]
- Shastri, A.; Sanz-Izquierdo, B.; Elibiary, A.; Parker, E.A. Manufacturing, Developments, and Constraints in Full 3-D Printing of Frequency-Selective Surface Using Low-Cost Open-Source Printer. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 2193–2200. [Google Scholar] [CrossRef]
- Adamec, B.; Machaj, J.; Brida, P.A. Novel Wideband Splitter for a Four-Element Antenna Array. Appl. Sci. 2024, 14, 1593. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Li, M.; Mcgloin, D.; Liao, S.; Nulman, J.; Yamada, M.; Iacopi, F. Additively Manufactured Millimeter-Wave Dual-Band Single-Polarization Shared Aperture Fresnel Zone Plate Metalens Antenna. IEEE Trans. Antennas Propag. 2021, 69, 6261–6272. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Y.; Hu, N.; Liao, S.; Nulman, J. Additively Manufactured Multi-Material Ultrathin Metasurfaces for Broadband Circular Polarization Decoupled Beams and Orbital Angular Momentum Generation. ACS Appl. Mater. Interfaces 2021, 13, 59460–59470. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef]
- Djurović, S.; Lazarević, D.; Ćirković, B.; Mišić, M.; Ivković, M.; Stojčetović, B.; Petković, M.; Ašonja, A. Modeling and Prediction of Surface Roughness in Hybrid Manufacturing–Milling after FDM Using Artificial Neural Networks. Appl. Sci. 2024, 14, 5980. [Google Scholar] [CrossRef]
- Meana, V.; Zapico, P.; Cuesta, E.; Giganto, S.; Meana, L.; Martínez-Pellitero, S. Additive Manufacturing of Ceramic Reference Spheres by Stereolithography (SLA). Appl. Sci. 2024, 14, 7530. [Google Scholar] [CrossRef]
- Pozhanka, M.; Zagrai, A.; Baez Avila, F.; Drach, B. Application of Ultrasonic Testing for Assessing the Elastic Properties of PLA Manufactured by Fused Deposition Modeling. Appl. Sci. 2024, 14, 7639. [Google Scholar] [CrossRef]
- Kumar, S.; Kruth, J.-P. Composites by rapid prototyping technology. Mater. Des. 2010, 31, 850–856. [Google Scholar] [CrossRef]
- Mur-Gorgas, A.; Martínez-Pellitero, S.; Joglar, T.; Escapa, A.; Mateos, R. 3D-Printed Conductive Polymers as Alternative for Bioelectrochemical Systems Electrodes: Abiotic Study and Biotic Start-Up. Appl. Sci. 2024, 14, 7199. [Google Scholar] [CrossRef]
- Öngül, F.F.; Kandemir, İ.; Pala Öngül, E. Experimental Comparison of Fastener Implementation Approaches in Fused Deposition Modeling. Appl. Sci. 2024, 14, 5172. [Google Scholar] [CrossRef]
- Vido, M.; De Oliveira Neto, G.C.; Lourenço, S.R.; Amorim, M.; Rodrigues, M.J.F. Computer-Aided Design and Additive Manufacturing for Automotive Prototypes: A Review. Appl. Sci. 2024, 14, 7155. [Google Scholar] [CrossRef]
- Massaccesi, A.; Bertana, V.; Beccaria, M.; Marasso, S.L.; Cocuzza, M.; Dassano, G.; Pirinoli, P. Three-Dimensional-Printed Wideband Perforated Dielectric-Only Reflectarray in Ka-Band. IEEE Trans. Antennas Propag. 2023, 71, 7848–7859. [Google Scholar] [CrossRef]
- Melendro-Jiménez, J.; Sanchez-Olivares, P.; Tamayo-Domínguez, A.; Luis Masa-Campos, J.; Fernández-González, J.-M. A Novel Logarithmic-Spiral-Shaped 3-D-Printed Dielectric Polarizer for Dual-Circularly Polarized Conical-Beam Radiation Patterns in the Ka-Band. IEEE Trans. Antennas Propag. 2024, 72, 6219–6228. [Google Scholar] [CrossRef]
- Melendro-Jimenez, J.; Sanchez-Olivares, P.; Tamayo-Dominguez, A.; Sun, X.; Fernandez-Gonzalez, J.M. 3D Printed Directive Beam-Steering Antenna Based on Gradient Index Flat Lens With an Integrated Polarizer for Dual Circular Polarization at W-Band. IEEE Trans. Antennas Propag. 2023, 71, 1059–1064. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M.; Dou, W.; Li, T. 3-D-Printed All-Metal Conformal Circularly Polarized Reflectarray Antenna at X-Band. IEEE Trans. Antennas Propag. 2024, 72, 4989–4998. [Google Scholar] [CrossRef]
- Li, S.; Izquierdo, B.S.; Gao, S.; Chen, Z. 3D-Printed Dielectric Resonator Antenna Array for Millimeter Wave Applications. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023. [Google Scholar]
- Li, S.; Njogu, P.; Izquierdo, B.S.; Gao, S.; Chen, Z. 3D Printing Antennas for 5G and Millimeter Wave 6G Applications. In Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Virtual, 12–15 September 2022. [Google Scholar]
- Marrocco, V.; Basile, V.; Fassi, I.; Grande, M.; Laneve, D.; Prudenzano, F.; D’Orazio, A. Dielectric Resonant Antennas via Additive Manufacturing for 5G Communications. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 1 June 2019. [Google Scholar]
- Hehenberger, S.P.; Caizzone, S.; Yarovoy, A.G. Additive Manufacturing of Linear Continuous Permittivity Profiles and Their Application to Cylindrical Dielectric Resonator Antennas. IEEE Open J. Antennas Propag. 2023, 4, 373–382. [Google Scholar] [CrossRef]
- Basile, V.; Grande, M.; Marrocco, V.; Laneve, D.; Petrignani, S.; Prudenzano, F.; Fassi, I. Design and Manufacturing of Super-Shaped Dielectric Resonator Antennas for 5G Applications Using Stereolithography. IEEE Access 2020, 8, 82929–82937. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Bernardo-Clemente, B. Selective Laser Sintering Manufacturing as a Low Cost Alternative for Flat-Panel Antennas in Millimeter-Wave Bands. IEEE Access 2021, 9, 45721–45729. [Google Scholar] [CrossRef]
- Huang, G.-L.; Zhou, S.-G.; Chio, T.-H.; Yeo, T.-S. Fabrication of a High-Efficiency Waveguide Antenna Array via Direct Metal Laser Sintering. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 622–625. [Google Scholar] [CrossRef]
- Huang, G.-L.; Zhou, S.-G.; Yuan, T. Development of a Wideband and High-Efficiency Waveguide-Based Compact Antenna Radiator With Binder-Jetting Technique. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Oh, Y.; Bharambe, V.; Mummareddy, B.; Martin, J.; McKnight, J.; Abraham, M.A.; Walker, J.M.; Rogers, K.; Conner, B.; Cortes, P. Microwave dielectric properties of zirconia fabricated using NanoParticle Jetting™. Addit. Manuf. 2019, 27, 586–594. [Google Scholar] [CrossRef]
- Volakis, J.L.; Johnson, R.C.; Jasik, H. Antenna Engineering Handbook; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- ISO 4287; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. 2nd ed. International Organization for Standardization: Geneva, Switzerland, 1997.
Reference | [3,4] | [33] | [34] | [35] | This Work |
---|---|---|---|---|---|
Technique/Material | Dielectric ceramic | FDM/ PLA, polyamide, SLA/resin | FDM/3D printing filament | Micro-SLA/ photopolymer resin | FDM/ 3D printing filament |
Working Frequency | Variable | 3.5 GHz | 1.575 GHz | 3.5 GHz | 13 GHz, 26 GHz |
Permittivity | >20 | 6.41 | 15 | 2.7 | 10 |
Flexible? Range | No | No | Not given | No | Yes 2–12 |
Resolution | N.A. | 0.2 mm | 0.15 mm | 25 µm | 0.2 mm |
Surface Roughness | N.A. | 100 µm | N.A. | 200 µm | <150 µm |
Rapid Prototyping | No | Yes | Yes | Yes | Yes |
Fabrication Steps | Multiple | Single | Single | Single | Single |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Sanz Izquierdo, B.; Gao, S.; Chen, Z. Analysis of 3D Printed Dielectric Resonator Antenna Arrays for Millimeter-Wave 5G Applications. Appl. Sci. 2024, 14, 9886. https://doi.org/10.3390/app14219886
Li S, Sanz Izquierdo B, Gao S, Chen Z. Analysis of 3D Printed Dielectric Resonator Antenna Arrays for Millimeter-Wave 5G Applications. Applied Sciences. 2024; 14(21):9886. https://doi.org/10.3390/app14219886
Chicago/Turabian StyleLi, Siyu, Benito Sanz Izquierdo, Steven Gao, and Zhijiao Chen. 2024. "Analysis of 3D Printed Dielectric Resonator Antenna Arrays for Millimeter-Wave 5G Applications" Applied Sciences 14, no. 21: 9886. https://doi.org/10.3390/app14219886
APA StyleLi, S., Sanz Izquierdo, B., Gao, S., & Chen, Z. (2024). Analysis of 3D Printed Dielectric Resonator Antenna Arrays for Millimeter-Wave 5G Applications. Applied Sciences, 14(21), 9886. https://doi.org/10.3390/app14219886