Bioactive Compounds, Composition and Potential Applications of Avocado Agro-Industrial Residues: A Review
Abstract
:1. Introduction
2. Uses of Avocado Agro-Industrial Residues: Seed, Peel, and Leaves
3. Chemical Composition of Seeds, Peel, and Leaves
4. Bioactive Profile of Avocado By-Product Extracts
5. Stabilization of Bioactive Compounds Extracts
5.1. Encapsulation Technologies
5.2. Emulsions
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tamayo-Ramos, D.I.; Salazar-González, J.A.; Casson, S.A.; Urrea-López, R. Old and new horizons on Persea americana transformation techniques and applications. Plant Cell Tissue Organ Cult. 2022, 150, 253–266. [Google Scholar] [CrossRef]
- Avocado Production Worldwide 2022. (n.d.). Statista. Available online: https://www.statista.com/statistics/577455/world-avocado-production/ (accessed on 9 September 2024).
- Avocado Production by Country 2024. (n.d.). Available online: https://worldpopulationreview.com/country-rankings/avocado-production-by-country (accessed on 9 September 2024).
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, B.; Romaní, A.; Eibes, G.; Garrote, G.; Gullón, B.; del Río, P.G. Potential and prospects for utilization of avocado by-products in integrated biorefineries. Bioresour. Technol. 2022, 364, 128034. [Google Scholar] [CrossRef] [PubMed]
- López-Anguiano, L.-A.; Guajardo-Flores, C.-G.; Martín-del-Campo, S.-N.; Pineda-Lozano, C.-S. Avocado Byprod-ucts as a Source of Functional and Nutraceutical Compounds. In Food Byproducts: Valorization through Nutraceutical Production; Nova Science Publishers: Hauppauge, NY, USA, 2023; pp. 3–30. Available online: https://novapublishers.com/shop/food-byproducts-valorization-through-nutraceutical-production/ (accessed on 12 September 2024).
- Merino, D.; Bertolacci, L.; Paul, U.C.; Simonutti, R.; Athanassiou, A. Avocado Peels and Seeds: Processing Strategies for the Development of Highly Antioxidant Bioplastic Films. ACS Appl. Mater. Interfaces 2021, 13, 38688–38699. [Google Scholar] [CrossRef] [PubMed]
- Gumustepe, L.; Kurt, N.; Aydın, E.; Ozkan, G. Comparison of ohmic heating- and microwave-assisted extraction techniques for avocado leaves valorization: Optimization and impact on the phenolic compounds and bioactivities. Food Sci. Nutr. 2023, 11, 5609–5620. [Google Scholar] [CrossRef] [PubMed]
- De Montijo-Prieto, S.; Razola-Díaz, M.d.C.; Barbieri, F.; Tabanelli, G.; Gardini, F.; Jiménez-Valera, M.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Impact of Lactic Acid Bacteria Fermentation on Phenolic Compounds and Antioxidant Activity of Avocado Leaf Extracts. Antioxidants 2023, 12, 298. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (A/RES/70/1); UN General Assembly: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 3 October 2024).
- Cárdenas-Castro, A.P.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Segura Carretero, A.; Sáyago-Ayerdi, S.G. Bioactive Phytochemicals from Avocado Oil Processing By-Products. In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products; Ramadan Hassanien, M.F., Ed.; Springer International Publishing: New York, NY, USA, 2023; pp. 403–430. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Domínguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Quero, J.; Osada, J.; Martín-Belloso, O.; Rodríguez-Yoldi, M.J. Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules 2021, 11, 977. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Govea-Salas, M.; Pintado, M.E.; Aguilar, C.N. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind. Crops Prod. 2020, 154, 112623. [Google Scholar] [CrossRef]
- Polat Kose, L.; Bingol, Z.; Kaya, R.; Goren, A.C.; Akincioglu, H.; Durmaz, L.; Koksal, E.; Alwasel, S.H.; Gülçin, İ. Anticholinergic and antioxidant activities of avocado (Folium perseae) leaves–phytochemical content by LC-MS/MS analysis. Int. J. Food Prop. 2020, 23, 878–893. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, B.; Ferreira-Santos, P.; Gullón, B.; Teixeira, J.A.; Botelho, C.M.; Yáñez, R. Exploiting the potential of bioactive molecules extracted by ultrasounds from avocado peels—Food and nutraceutical applications. Antioxidants 2021, 10, 1475. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chem. 2019, 272, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Awolu, O.O.; Fole, E.T.; Oladeji, O.A.; Ayo-Omogie, H.N.; Olagunju, A.I. Microencapsulation of avocado pear seed (Persea Americana mill) bioactive-rich extracts and evaluation of its antioxidants, in vitro starch digestibility and storage stability. Bull. Natl. Res. Cent. 2022, 46, 34. [Google Scholar] [CrossRef]
- Gómez, F.S.; Sánchez, S.P.; Iradi, M.G.G.; Azman, N.A.M.; Almajano, M.P. Avocado Seeds: Extraction Optimization and Possible Use as Antioxidant in Food. Antioxidants 2014, 3, 439. [Google Scholar] [CrossRef] [PubMed]
- Dabas, D.; Elias, R.J.; Lambert, J.D.; Ziegler, G.R. A colored avocado seed extract as a potential natural colorant. J. Food Sci. 2011, 76, C1335–C1341. [Google Scholar] [CrossRef]
- Hatzakis, E.; Mazzola, E.P.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Perseorangin: A natural pigment from avocado (Persea americana) seed. Food Chem. 2019, 293, 15–22. [Google Scholar] [CrossRef]
- Rotta, E.M.; de Morais, D.R.; Biondo, P.B.F.; dos Santos, V.J.; Matsushita, M.; Visentainer, J.V. Use of avocado peel (Persea americana) in tea formulation: A functional product containing phenolic compounds with antioxidant activity. Acta Scientiarum. Technol. 2016, 38, 23–29. [Google Scholar] [CrossRef]
- Vargas-Torrico, M.F.; von Borries-Medrano, E.; Aguilar-Méndez, M.A. Development of gelatin/carboxymethylcellulose active films containing Hass avocado peel extract and their application as a packaging for the preservation of berries. Int. J. Biol. Macromol. 2022, 206, 1012–1025. [Google Scholar] [CrossRef]
- Duarte, P.F.; Chaves, M.A.; Borges, C.D.; Mendonça, C.R.B. Avocado: Characteristics, health benefits and uses. Ciência Rural 2016, 46, 747–754. [Google Scholar] [CrossRef]
- Sutiningsih, D.; Sari, D.P.; Adi, M.S.; Hadi, M.; Azzahra, N.A. Effectiveness of avocado leaf extract (Persea americana Mill.) as antihypertensive (11:1100). F1000Research 2022, 11, 1100. [Google Scholar] [CrossRef]
- Ojewole, J.A.O.; Amabeoku, G.J. Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice. Phytother. Res. 2006, 20, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Srianthie, D.; Udayangani, D.N.; Chamari, H. Antioxidant, antibacterial and anti-inflammatory potential of the aqueous extract of the raw leaves of sri lankan variety of persea americana miller (avocado). Int. J. Ayurveda Pharma Res. 2020, 8, 1–11. [Google Scholar]
- Dabas, D.; Elias, R.J.; Ziegler, G.R.; Lambert, J.D. In Vitro Antioxidant and Cancer Inhibitory Activity of a Colored Avocado Seed Extract. Int. J. Food Sci. 2019, 2019, 6509421. [Google Scholar] [CrossRef] [PubMed]
- Dabas, D.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr. Pharm. Des. 2013, 19, 6133–6140. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Dunno, K.; Dhull, S.B.; Kumar Siroha, A.; Changan, S.; Maqsood, S.; Rusu, A.V. Avocado seed discoveries: Chemical composition, biological properties, and industrial food applications. Food Chem. X 2022, 16, 100507. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Falé, Z.; Santos, L. Sustainability in Skin Care: Incorporation of Avocado Peel Extracts in Topical Formulations. Molecules 2022, 27, 1782. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Said, G.F.; Ibrahim, G.A.A.; Elnashar, A.A.S. Effective removal of hexavalent chromium from water by sustainable nano-scaled waste avocado seeds: Adsorption isotherm, thermodynamics, kinetics, and error function. Biomass Convers. Biorefinery 2024, 14, 14725–14743. [Google Scholar] [CrossRef]
- Ibrahim, F.M.; Najeeb, D.A.; ThamerSadeq, H. Green preparation of Cu nanoparticles of the avocado seed extract as an adsorbent surface. Mater. Sci. Energy Technol. 2023, 6, 130–136. [Google Scholar] [CrossRef]
- Tesfaye, T.; Ayele, M.; Gibril, M.; Ferede, E.; Limeneh, D.Y.; Kong, F. Beneficiation of avocado processing industry by-product: A review on future prospect. Curr. Res. Green Sustain. Chem. 2022, 5, 100253. [Google Scholar] [CrossRef]
- Sandoval-Contreras, T.; González Chávez, F.; Poonia, A.; Iñiguez-Moreno, M.; Aguirre-Güitrón, L. Avocado Waste Biorefinery: Towards Sustainable Development. Recycling 2023, 8, 81. [Google Scholar] [CrossRef]
- Flores, M.; Ortiz-Viedma, J.; Curaqueo, A.; Rodriguez, A.; Dovale-Rosabal, G.; Magaña, F.; Vega, C.; Toro, M.; López, L.; Ferreyra, R.; et al. Preliminary Studies of Chemical and Physical Properties of Two Varieties of Avocado Seeds Grown in Chile. J. Food Qual. 2019, 2019, 3563750. [Google Scholar] [CrossRef]
- Nwaokobia, K.; Oguntokun, M.O.; Okolie, P.L.; Ogboru, R.O.; Idugboe, O.D. Evaluation of the chemical composition of Persea americana (Mill) pulp and seed. J. Biosci. Biotechnol. Discov. 2018, 3, 83–89. [Google Scholar] [CrossRef]
- Siol, M.; Sadowska, A. Chemical Composition, Physicochemical and Bioactive Properties of Avocado (Persea americana) Seed and Its Potential Use in Functional Food Design. Agriculture 2023, 13, 316. [Google Scholar] [CrossRef]
- Egbuonu, A.C.C.; Opara, I.C.; Onyeabo, C.; Uchenna, N.O. Proximate, functional, antinutrient and antimicrobial properties of avocado pear (Persea americana) Seeds. J. Nutr. Health Food Eng. 2018, 8, 00260. [Google Scholar] [CrossRef]
- Ifesan, B.O.T.; Olorunsola, B.O.; Ifesan, B.T. Nutritional Composition and Acceptability of Candy from Avocado Seed (Persea americana). Int. J. Agric. Innov. Res. 2015, 3, 1631–1634. [Google Scholar]
- Tan, C.X.; Tan, S.S.; Ghazali, H.M.; Tan, S.T. Physical properties and proximate composition of Thompson red avocado fruit. Br. Food J. 2021, 124, 1421–1429. [Google Scholar] [CrossRef]
- Vinha, A.; Moreira, J.; Barreira, S. Physicochemical Parameters, Phytochemical Composition and Antioxidant Activity of the Algarvian Avocado (Persea americana Mill.). J. Agric. Sci. 2013, 5, 12. [Google Scholar] [CrossRef]
- Arukwe, U.; Amadi, B.A.; Duru, M.K.C.; Agomuo, E.N.; Adindu, E.A.; Odika, P.C.; Lele, K.C.; Egejuru, L.; Anudike, J. Chemical composition of Persea americana leaf, fruit and seed. Int. J. Res. Rev. Appl. Sci. 2012, 11, 346–349. [Google Scholar]
- Morais, D.R.; Rotta, E.M.; Sargi, S.C.; Bonafe, E.G.; Suzuki, R.M.; Souza, N.E.; Matsushita, M.; Visentainer, J.V. Proximate Composition, Mineral Contents and Fatty Acid Composition of the Different Parts and Dried Peels of Tropical Fruits Cultivated in Brazil. J. Braz. Chem. Soc. 2017, 28, 308–318. [Google Scholar] [CrossRef]
- Guevara, D.I.; Payrol, J.A.; Santana, D.P.; Quintero, R.C. Estudio fitoquímico preliminar y actividad antioxidante de un extracto acuoso de hoja de aguacate (Persea americana Mill.). QhaliKay Rev. De Cienc. De La Salud 2021, 5, 3. [Google Scholar] [CrossRef]
- Chimezie, E.C.; Wang, Z.; Yu, Y.; Nonso, U.C.; Duan, P.-G.; Kapusta, K. Yield optimization and fuel properties evaluation of the biodiesel derived from avocado pear waste. Ind. Crops Prod. 2023, 191, 115884. [Google Scholar] [CrossRef]
- Tesfaye, T.; Gibril, M.; Sithole, B.; Ramjugernath, D.; Chavan, R.; Chunilall, V.; Gounden, N. Valorisation of avocado seeds: Extraction and characterisation of starch for textile applications. Clean Technol. Environ. Policy 2018, 20, 2135–2154. [Google Scholar] [CrossRef]
- Mora-Sandí, A.; Ramírez-González, A.; Castillo-Henríquez, L.; Lopretti-Correa, M.; Vega-Baudrit, J.R. Persea Americana Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products. Polymers 2021, 13, 1727. [Google Scholar] [CrossRef]
- Egbuonu, A.C.C.; Egbuonu, C.; Opara, C.; Atasie, O.; Mbah, U. Vitamins Composition and Antioxidant Properties in Normal and Monosodium Glutamate-Compromised Rats’ Serum of Persea Americana (Avocado Pear) Seed. Open Access J. Chem. OAJC 2017, 1, 19–24. [Google Scholar] [CrossRef]
- Sanchez-Rosario, R.; Hildenbrand, Z.L. Produced water treatment and valorization: A techno-economical review. Energies 2022, 15, 4619. [Google Scholar] [CrossRef]
- Clarke, C.; Upson, S. A global portrait of the manganese industry—A socioeconomic perspective. NeuroToxicology 2017, 58, 173–179. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Potential environmental pollution from copper metallurgy and methods of management. Environ. Res. 2021, 197, 111050. [Google Scholar] [CrossRef]
- Godswill, A.G.; Somtochukwu, I.V.; Ikechukwu, A.O.; Kate, E.C. Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Lozano Muñoz, I.; Díaz, N.F. Minerals in edible seaweed: Health benefits and food safety issues. Crit. Rev. Food Sci. Nutr. 2020, 62, 1592–1607. [Google Scholar] [CrossRef]
- Hue, H.T.; Thai, N.M.; Dao, P.T.A. Survey on different polyphenol extraction methods from avocado seed (Persea americana Mill) and assay on their antioxidant and acute toxicity activities. Vietnam J. Chem. 2021, 59, 870–876. [Google Scholar] [CrossRef]
- Husen, R.; Ando, Y.; Ismail, A.; Shirai, Y. Effect of ultrasonic-assisted extraction on phenolic content of avocado. Malays. J. Anal. Sci. 2014, 18, 690–694. [Google Scholar]
- Pereira, S.G.; Teixeira-Guedes, C.; Souza-Matos, G.; Maricato, É.; Nunes, C.; Coimbra, M.A.; Teixeira, J.A.; Pereira, R.N.; Rocha, C.M.R. Influence of ohmic heating in the composition of extracts from Gracilaria vermiculophylla. Algal Res. 2021, 58, 102360. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green alternative methods for the extraction of antiox-idant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Folasade, O.A.; Olaide, R.A.; Olufemi, T.A. Antioxidant Properties of Persea Americana M. Seed as Affected by Different Extraction Solvent. J. Adv. Food Sci. Technol. 2016, 3, 101–106. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, B.; Ferreira-Santos, P.; Alfonso, I.M.; Martínez, S.; Genisheva, Z.; Gullón, B. Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Molecules 2022, 27, 6646. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Mayol, I.; Casas-Forero, N.; Pastene-Navarrete, E.; Lima Silva, F.; Alarcón-Enos, J. Fractionation and Hydrolyzation of Avocado Peel Extract: Improvement of Antibacterial Activity. Antibiotics 2021, 10, 23. [Google Scholar] [CrossRef]
- Rojas-García, A.; Villegas-Aguilar, M.d.C.; García-Villegas, A.; Cádiz-Gurrea, M.d.l.L.; Fernández-Ochoa, Á.; Fernández-Moreno, P.; Arráez-Román, D.; Segura-Carretero, A. Characterization and Biological Analysis of Avocado Seed and Peel Extracts for the Development of New Therapeutical Strategies. Biol. Life Sci. Forum 2022, 18, 9. [Google Scholar] [CrossRef]
- Rosero, J.C.; Cruz, S.; Osorio, C.; Hurtado, N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef]
- Gong, W.; Wang, R.; Huang, H.; Hou, Y.; Wang, X.; He, W.; Gong, X.; Hu, J. Construction of double network hydrogels using agarose and gallic acid with antibacterial and anti-inflammatory properties for wound healing. Int. J. Biol. Macromol. 2023, 227, 698–710. [Google Scholar] [CrossRef]
- Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomed. Int. J. Phytother. Phytopharm. 2020, 73, 152906. [Google Scholar] [CrossRef]
- Chen, J.; Dai, X.; Jiang, C.; Fu, Y.; Jiang, T.; Tang, L.; Wang, L.; Wang, Q.; Huang, G.; Cao, J. One new protocatechuic acid methyl ester and one enantiomeric pair of dihydroflavones isolated from Phymatopteris hastata. Phytochem. Lett. 2021, 43, 130–134. [Google Scholar] [CrossRef]
- Olayan, A.; Aloufi, A.S.; AlAmri, O.D.; Ola, H.; Abdel, A.E. Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: Role of oxidative stress, inflammation and apoptosis. Sci. Total Environ. 2020, 723, 137969. [Google Scholar] [CrossRef]
- Yamabe, N.; Park, J.Y.; Lee, S.; Cho, E.-J.; Lee, S.; Kang, K.S.; Hwang, G.S.; Kim, S.-N.; Kim, H.Y.; Shibamoto, T. Protective effects of protocatechuic acid against cisplatin-induced renal damage in rats. J. Funct. Foods 2015, 19, 20–27. [Google Scholar] [CrossRef]
- Bal, S.S.; Leishangthem, G.D.; Sethi, R.S.; Singh, A. P-coumaric acid ameliorates fipronil induced liver injury in mice through attenuation of structural changes, oxidative stress and inflammation. Pestic. Biochem. Physiol. 2022, 180, 104997. [Google Scholar] [CrossRef] [PubMed]
- Grodzicka, M.; Pena-Gonzalez, C.E.; Ortega, P.; Michlewska, S.; Lozano, R.; Bryszewska, M.; de la Mata, F.J.; Ionov, M. Heterofunctionalized polyphenolic dendrimers decorated with caffeic acid: Synthesis, characterization and antioxidant activity. Sustain. Mater. Technol. 2022, 33, e00497. [Google Scholar] [CrossRef]
- Kar, A.; Panda, S.; Singh, M.; Biswas, S. Regulation of PTU-induced hypothyroidism in rats by caffeic acid primarily by activating thyrotropin receptors and by inhibiting oxidative stress. Phytomed. Plus 2022, 2, 100298. [Google Scholar] [CrossRef]
- Kfoury, M.; Geagea, C.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Effect of cyclodextrin and cosolvent on the solubility and antioxidant activity of caffeic acid. Food Chem. 2019, 278, 163–169. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Zabolian, A.; Saleki, H.; Farahani, M.V.; Hamzehlou, S.; Far, F.B.; Sharifzadeh, S.O.; Samarghandian, S.; Khan, H.; et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol. Res. 2021, 171, 105759. [Google Scholar] [CrossRef]
- Raviadaran, R.; Ng, M.H.; Chandran, D.; Ooi, K.K.; Manickam, S. Stable W/O/W multiple nanoemulsion encapsulating natural tocotrienols and caffeic acid with cisplatin synergistically treated cancer cell lines (A549 and HEP G2) and reduced toxicity on normal cell line (HEK 293). Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111808. [Google Scholar] [CrossRef]
- Altındağ, F.; Rağbetli, M.Ç.; Özdek, U.; Koyun, N.; Ismael Alhalboosi, J.K.; Elasan, S. Combined treatment of sinapic acid and ellagic acid attenuates hyperglycemia in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 2021, 156, 112443. [Google Scholar] [CrossRef]
- Kaur, J.; Mehta, V.; Kaur, G. Preparation, development and characterization of Leucaena leucocephala galactomannan (LLG) conjugated sinapic acid: A potential colon targeted prodrug. Int. J. Biol. Macromol. 2021, 178, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Saeedavi, M.; Goudarzi, M.; Mehrzadi, S.; Basir, Z.; Hasanvand, A.; Hosseinzadeh, A. Sinapic acid ameliorates airway inflammation in murine ovalbumin-induced allergic asthma by reducing Th2 cytokine production. Life Sci. 2022, 307, 120858. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Chen, Q.; Xie, Y.; Tao, Z.; Jin, K.; Chen, S.; Bai, Y.; Yang, J.; Shan, S. Ferulic acid attenuates oxidative DNA damage and inflammatory responses in microglia induced by benzo(a)pyrene. Int. Immunopharmacol. 2019, 77, 105980. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, J.; Hao, Y.; Liu, Y. Identification of the DPPH radical scavenging reaction adducts of ferulic acid and sinapic acid and their structure-antioxidant activity relationship. LWT 2021, 146, 111411. [Google Scholar] [CrossRef]
- Alagesan, V.; Ramalingam, S.; Kim, M.; Venugopal, S. Antioxidant activity guided isolation of a coumarin compound from Ipomoea pes-caprea (Convolvulaceae) leaves acetone extract and its biological and molecular docking studies. Eur. J. Integr. Med. 2019, 32, 100984. [Google Scholar] [CrossRef]
- Çakmakçı, E.; Özdemir, M.; Şen, F.; Bulut, M.; Yalçın, B. Vegetable oil-based, coumarin-containing antibacterial thermosets with improved thermal stability via copper-free thermal azide-alkyne click polymerization. Ind. Crops Prod. 2022, 182, 114870. [Google Scholar] [CrossRef]
- Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem. 2016, 119, 141–168. [Google Scholar] [CrossRef]
- Seo, W.D.; Kim, J.Y.; Ryu, H.W.; Kim, J.H.; Han, S.-I.; Ra, J.-E.; Seo, K.H.; Jang, K.C.; Lee, J.H. Identification and characterisation of coumarins from the roots of Angelica dahurica and their inhibitory effects against cholinesterase. J. Funct. Foods 2013, 5, 1421–1431. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, R.; Lin, X.; Wu, L.; Chen, H.; Shen, S.; Li, Y.; Wei, Y.; Deng, G. Procyanidins and its metabolites by gut microbiome improves insulin resistance in gestational diabetes mellitus mice model via regulating NF-κB and NLRP3 inflammasome pathway. Biomed. Pharmacother. 2022, 151, 113078. [Google Scholar] [CrossRef]
- Na, W.; Ma, B.; Shi, S.; Chen, Y.; Zhang, H.; Zhan, Y.; An, H. Procyanidin B1, a novel and specific inhibitor of Kv10.1 channel, suppresses the evolution of hepatoma. Biochem. Pharmacol. 2020, 178, 114089. [Google Scholar] [CrossRef]
- Sharma, A.K.; Beniwal, V. Biosynthesis and medicinal applications of proanthocyanidins: A recent update. Biocatal. Agric. Biotechnol. 2022, 45, 102500. [Google Scholar] [CrossRef]
- Shen, W.; Li, W.; Shao, Y.; Zeng, J. Proanthocyanidin delays litchi peel browning by inhibiting ethylene biosynthesis, respiratory metabolism, and phenol oxidase activities. Sci. Hortic. 2023, 309, 111677. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. From by-product to functional ingredient: Incorporation of avocado peel extract as an antioxidant and antibacterial agent. Innov. Food Sci. Emerg. Technol. 2022, 80, 103116. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Sobral, M.M.C.; Viegas, O.; Cunha, S.C.; Alarcón-Enos, J.; Pinho, O.; Ferreira, I.M. Incorporation of avocado peel extract to reduce cooking-induced hazards in beef and soy burgers: A clean label ingredient. Food Res. Int. 2021, 147, 110434. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Viegas, O.; Sobral, M.M.C.; Casas-Forero, N.; Fiallos, N.; Pastene-Navarrete, E.; Faria, M.A.; Alarcón-Enos, J.; Pinho, O.; Ferreira, I.M. In vitro gastric bioaccessibility of avocado peel extract in beef and soy-based burgers and its impact on Helicobacter pylori risk factors. Food Chem. 2022, 373, 131505. [Google Scholar] [CrossRef]
- Leontopoulos, S.; Skenderidis, P.; Petrotos, K.; Mitsagga, C.; Giavasis, I. Preliminary studies on suppression of important plant pathogens by using pomegranate and avocado residual peel and seed extracts. Horticulturae 2022, 8, 283. [Google Scholar] [CrossRef]
- Mishra, M. (Ed.) Handbook of Encapsulation and Controlled Release; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Pedroza-Islas, R.; Escalona-Buendía, H.B.; Pedraza-Chaverri, J.; Ponce-Alquicira, E. Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocoll. 2017, 62, 49–57. [Google Scholar] [CrossRef]
- Tirado-Kulieva, V.; Atoche-Dioses, S.; Hernández-Martínez, E.; Tirado-Kulieva, V.; Atoche-Dioses, S.; Hernández-Martínez, E. Phenolic compounds of mango (Mangifera indica) by-products: Antioxidant and antimicrobial potential, use in disease prevention and food industry, methods of extraction and microencapsulation. Sci. Agropecu. 2021, 12, 283–293. [Google Scholar] [CrossRef]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Pudziuvelyte, L.; Marksa, M.; Sosnowska, K.; Winnicka, K.; Morkuniene, R.; Bernatoniene, J. Freeze-drying technique for microencapsulation of Elsholtzia ciliata ethanolic extract using different coating materials. Molecules 2020, 25, 2237. [Google Scholar] [CrossRef]
- Poshadri, A.; Aparna, K. Microencapsulation technology: A review. J. Res. ANGRAU 2010, 38, 86–102. [Google Scholar]
- Chimsook, T. Microwave assisted extraction of avocado oil from avocado skin and encapsulation using spray drying. Key Eng. Mater. 2017, 737, 341–346. [Google Scholar] [CrossRef]
- Kautsar, D.B.; Rois, M.F.; Faizah, N.; Widiyastuti, W.; Nurtono, T.; Setyawan, H. Antioxidant and Antimicrobial Agents from Avocado (Persea americana) Seed Extract Encapsulated in Gum Arabic through Spray Drying Method. Period. Polytech. Chem. Eng. 2023, 67, 1. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Ponce-Alquicira, E. Effect of the addition of microcapsules with avocado peel extract and nisin on the quality of ground beef. Food Sci. Nutr. 2020, 8, 1325–1334. [Google Scholar] [CrossRef]
- Sahyon, H.A.; El-Shafai, N.M.; Elnajjar, N.; Althobaiti, F.; Aldhahrani, A.; Alharbi, N.S.; Shoair, A.G.F.; El-Mehasseb, I.M. Avocado peel extract loaded on chitosan nanoparticles alleviates urethane toxicity that causes lung cancer in a mouse model. Int. J. Biol. Macromol. 2023, 234, 123633. [Google Scholar] [CrossRef] [PubMed]
- Chuacharoen, T.; Polprasert, C.; Sabliov, C.M. Avocado seed extract encapsulated in zein nanoparticles as a functional ingredient. J. Agric. Food Res. 2024, 18, 101332. [Google Scholar] [CrossRef]
- Cerda-Opazo, P.; Gotteland, M.; Oyarzun-Ampuero, F.A.; Garcia, L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocoll. 2021, 111, 106370. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Salvia-Trujillo, L.; González-Aguilar, G.A.; Martín-Belloso, O. Interfacial activity of phenolic-rich extracts from avocado fruit waste: Influence on the colloidal and oxidative stability of emulsions and nanoemulsions. Innov. Food Sci. Emerg. Technol. 2021, 69, 102665. [Google Scholar] [CrossRef]
- Sánchez-Quezada, V.; Gaytán-Martínez, M.; Recio, I.; Loarca-Piña, G. Avocado seed by-product uses in emulsion-type ingredients with nutraceutical value: Stability, cytotoxicity, nutraceutical properties, and assessment of in vitro oral-gastric digestion. Food Chem. 2023, 421, 136118. [Google Scholar] [CrossRef]
- Bakrim, S.; El Omari, N.; El Hachlafi, N.; Bakri, Y.; Lee, L.-H.; Bouyahya, A. Dietary Phenolic Compounds as Anticancer Natural Drugs: Recent Update on Molecular Mechanisms and Clinical Trials. Foods 2022, 11, 3323. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, W.; Jia, L.; Sun, X.; Chen, G.; Zhao, X.; Li, X.; Meng, X.; Kong, L.; Xing, L.; et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br. J. Radiol. 2016, 89, 20150665. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhu, W.; Xie, P.; Li, H.; Zhang, X.; Sun, X.; Yu, J.; Xing, L. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother. Oncol. 2014, 110, 132–136. [Google Scholar] [CrossRef] [PubMed]
- McLarty, J.; Bigelow, R.L.H.; Smith, M.; Elmajian, D.; Ankem, M.; Cardelli, J.A. Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev. Res. 2009, 2, 673–682. [Google Scholar] [CrossRef]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit. Rev. Food Sci. Nutr. 2018, 59, 3371–3379. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Del Bo’, C.; Martini, D.; Porrini, M.; Riso, P. A Review of Registered Clinical Trials on Dietary (Poly)Phenols: Past Efforts and Possible Future Directions. Foods 2020, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, T.; Ayele, M.; Ferede, E.; Gibril, M.; Kong, F.; Sithole, B. A techno-economic feasibility of a process for extraction of starch from waste avocado seeds. Clean Technol. Environ. Policy 2021, 23, 581–595. [Google Scholar] [CrossRef]
- Sousa, D.; Rodrigues, D.; Castro, P.M.; Matos, H.A. Equation-Oriented Modeling and Optimization of a Biorefinery Based on Avocado Waste. Processes 2024, 12, 91. [Google Scholar] [CrossRef]
- Puglia, D.; Pezzolla, D.; Gigliotti, G.; Torre, L.; Bartucca, M.L.; Del Buono, D. The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. Sustainability 2021, 13, 2710. [Google Scholar] [CrossRef]
- Lim, K.J.A.; Cabajar, A.A.; Migallos, M.K.V.; Lobarbio, C.F.Y.; Taboada, E.B. Microencapsulation of Phenolic Compounds from Waste Mango Seed Kernel Extract by Spray Drying Technology. Nat. Environ. Pollut. Technol. 2019, 18, 765–775. [Google Scholar]
- Veršič, R.J. Chapter 32—The Economics of Microencapsulation in the Food Industry. In Microencapsulation in the Food Industry; Gaonkar, A.G., Vasisht, N., Khare, A.R., Sobel, R., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 409–417. [Google Scholar] [CrossRef]
- Microencapsulation Market Size, Share, Trend, Growth|2032. (n.d.). Available online: https://www.expertmarketresearch.com/reports/microencapsulation-market (accessed on 5 October 2024).
- CFR—Code of Federal Regulations Title 21. (n.d.). Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.230 (accessed on 5 October 2024).
- Permal, R.; Chang, W.L.; Seale, B.; Hamid, N.; Kam, R. Converting industrial organic waste from the cold-pressed avocado oil production line into a potential food preservative. Food Chem. 2020, 306, 125635. [Google Scholar] [CrossRef]
- Oboh, G.; Adelusi, T.; Akinyemi, A. Inhibitory effect of phenolic extract from leaf and fruit of avocado pear (Persea americana) on Fe2+ induced lipid peroxidation in rats’ pancreas In Vitro. FUTA J. Res. Sci. 2013, 9, 276–286. [Google Scholar]
Avocado Residue | Variety | Component (g/100 g Sample) | ||||||
---|---|---|---|---|---|---|---|---|
Moisture | Protein | Fats | Carbohydrates | Ash | Fiber | Reference | ||
Seed | Negra de la Cruz | 58.70 ± 0.20 a | 0.60 ± 0.20 a | 1.32 ± 0.61 a | 33.51 ± 1.51 a | 1.10 ± 0.01 a | 4.92 ± 2.71 a | [36] |
Hass | 57.61 ± 3.61 a | 1.91 ± 0.0 a | 2.02 ± 0.31 a | 32.04 ± 1.72 a | 1.52 ± 0.02 a | 5.01 ± 0.21 a | ||
Hass | 13.27 ± 0.01 b | 19.94 ± 1.40 b | 15.73 ± 1.19 b | 48.21 ± 4.12 b | 0.84 ± 0.02 b | 4.10 ± 0.16 b | [37] | |
Hass | NR | 3.4 ± 0.01 b | 3.2 ± 0.01 b | 67.5 ± 0.01 b | 1.6 ± 0.01 b | 21.6 ± 0.01 b | [38] | |
NR | 13.09 ± 0.14 b | 2.64 ± 0.0 b | 0.33 ± 0.00 b | 80.12 ± 0.15 b | 3.82 ± 0.00 b | 2.87 ± 0.00 b | [39] | |
NR | 8.6 ± 0.14 b | 23.0 ± 2.80 b | 14.1 ± 0.18 b | 44.7 ± 4.80 b | 2.4 ± 0.70 b | 7.1 ± 1.23 b | [40] | |
Thompson red | 60.51 ± 0.80 b | 0.20 ± 0.09 b | 2.09 ± 0.07 b | 35.27 b | 1.93 ± 0.12 b | 3.08 ± 0.13 b | [41] | |
Hass | 54.45 ± 2.33 a | 2.19 ± 0.16 a | 14.7 ± 0.32 a | NR | 1.29 ± 0.03 a | NR | [42] | |
NR | 9.92 ± 0.01 b | 17.94 ± 1.40 b | 16.54 ± 2.10 b | 48.11 ± 4.13 b | 2.40 ± 0.19 b | 3.10 ± 0.18 b | [43] | |
NR | 67.2 ± 0.6 b | 9.6 ± 1.6 b | 3.9 ± 0.3 b | NR | 2.3 ± 0.4 b | 10.7 ± 2.8 b | [44] | |
Peel | Thompson red | 68.44 ± 1.91 b | 0.52 ± 0.15 b | 8.62 ± 0.20 b | 19.53 b | 2.89 ± 0.17 b | 12.74 ± 0.67 b | [41] |
Hass | 69.13 ± 2.58 a | 1.91 ± 0.08 a | 2.20 ± 1.65 a | NR | 1.50 ± 0.08 a | NR | [42] | |
NR | 4.0 ± 0.1 b | 6.4 ± 0.2 b | 4.7 ± 0.4 b | NR | 2.0 ± 0.3 b | 43.9 ± 2.1 b | [44] | |
Leaf | NR | 5.3 3 ± 0.62 b | 25.54 ± 2.52 b | 4.01 ± 0.16 b | 7.34 ± 0.41 b | 19.38 ± 4.34 b | 38.40 ± 5.12 b | [43] |
NR | 8.01 ± 1.13 b | NR | NR | NR | 6.24 ± 1.30 b | NR | [45] |
Avocado Residue | Component (mg/100 g Dry Sample) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Na | Ca | Mg | P | Zn | Fe | Cu | K | Mn | References | |
Seed | 0.30–39.4 | 0.820–434.9 | 0.100–55.8 | 0.097–57.35 | 0. 09–1.6 | 0.31–3.7 | 0.98–16.7 | 4.160–1202.6 | 1.5 ± 0.1 | [40,43,44] |
Peel | 21.1 ± 2.2 | 679.3 ± 53.6 | 46.9 ± 2.3 | NR | 1.6 ± 0.2 | 2.3 ± 0.3 | 14.5 ± 2.1 | 899.0 ± 71.2 | 1.4 ± 0.1 | [44] |
Leaf | 80.42 ± 9.12 | 56.13 ± 3.31 | 75.60 ± 13.31 | 48.9 ± 5.50 | 7.21 ± 2.62 | 14.61 ± 4.18 | 5.71 ± 1.26 | 148.92 ± 0.12 | NR | [43] |
Avocado Residue | Extraction Method | Observation | Bioactive Compounds * | Total Phenolic Content (TPC) | Total Flavonoid Content (TFC) | DPPH | References |
---|---|---|---|---|---|---|---|
Peel | Maceration | Peel residues were freeze-dried before the extraction process. Solvent used 80% ethanol, incubated for 20 h at 40 °C. | Flavonoids (epicatechin; type B procyanidin dimer, type B procyanidin trimer, Procyanidin tetramer, quercetin arabinoside glucoside, kaempferol arabinoside glucoside) | 309.95 ± 25.33 a | 12.54 ± 0.52 f | 72.64 ± 10.70 i | [13] |
Phenolic acids (Protocatechuic acid glucoside; tyrosol glucoside arabinoside; 5-O-caffeoylquinic acid) | |||||||
Terpenes (Penstemide) | |||||||
Solid–Liquid Extraction (SLE) | 50–70 °C, hydroalcoholic mixture (60/70%) | Flavonoids (glycosylated quercetins (arabinosyl, diglucoside, rhamnoside, xylosyl rhamnoside, rutinoside, etc.), procyanidins, (epi)catechin, luteolin, kaempferol) | 190 ± 10 b | Not Reported | 1500 j | [62] | |
Phenolic acids (derivatives of quinic acid or shikimic acid) | |||||||
Ultrasound-Assisted Extraction (UAE) | 50 °C; 37 kHz | Flavonoids (catechin, epigallocatechin 3-coumarate, quercetin-dihexose, quercetin O-arabinosyl-glucoside, rutin, quercetin, quercetin 3-glucoside, luteolin 7-O-(2″-O pentosyl) hexoside), naringenin, taxifolin) | 45.34 ± 1.7 b | 87.56 ± 1.2 g | 73.23 ± 3.4 k | [16] | |
Phenolic acids (4-hydroxybenzoic acid; chlorogenic acid; benzoic acid; p-coumaric acid) | |||||||
Maceration | Solvent used 80%methanol for 24 h at 15 °C. The filtered samples were lyophilized. | Flavonoids (catechin, epicatechin, apigenin, kaempferol, quercetin, quercetin diglucoside, quercetin 3-O-arabinosyl-glucoside) | 1058.0 ± 59.7 b | Not Reported | 82.5 ± 4.1 l | [63] | |
Phenolic acids (quinic acid, citric acid, 5-O-caffeoylquinic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, sinapic acid) | |||||||
Ultrasound-microwave combined method | The solvent used was 80% ethanol and distilled water. | Flavonoids (quercetin diglucoside, quercetin3-O-arabinoglucoside, quercetin3-O-galactoside, kaempferol, procyanidin dimer B, (epi)catechin, procyanidin trimer B, quinic acid derivatives) | 297.42 ± 10.7 b | Not Reported | 900.4 ± 8.8 m | [61] | |
Phenolic acids (5-O-caffeoylquinic acid, chlorogenic acid dimer, protocatechuic acid, ethyl chlorogenate) | |||||||
Seed | Microwave-assisted extraction (MAE) | The experiment used two designs, one with one with acetone (99.5% (v/v) purity) at 70% and one with ethanol (99.5% (v/v) purity). We will reference the extracts with acetone at 70%, since it was shown to extract bioactive compounds with higher antioxidant activity. | Flavonoids (catechin, epicatechin, (epi)catchin gallate) | 307.09 ± 14.16 c | Not reported | 266.56 ± 2.76 n | [14] |
Phenolic acids (3-O-caffeoylquinic acid, 3-p-coumaroylquinic acid, caffeoylquinic acid) | |||||||
Solid–Liquid Extraction (SLE) | 50–70 °C, hydroalcoholic mixture (60/70%) | Flavonoids (trimer procyanidins, (epi)catechin, luteolin, kaempferol) | 60 ± 10 b | Not Reported | 500 ± 10 j | [62] | |
Phenolic acids (derivatives of chlorogenic acid) | |||||||
Maceration | Seed residues were freeze-dried before extraction process. Solvent used 80% ethanol, incubated for 20 h at 40 °C. | Flavonoids (catechin, epicatechin, procyanidin dimer (type B), procyanidin trimer (type A), sakuranetin, luteolin) | 232.36 ± 12.25 a | 2.13 ± 0.22 f | 90.91 ± 3.59 i | [13] | |
Phenolic acids (salidroside, caffeoylshikimic acid, 3-O-caffeoylquinic acid) | |||||||
Terpenes (Penstemide) | |||||||
Maceration | Solvent used 80%methanol for 24 h at 15 °C. The filtered samples were lyophilized | Flavonoids (catechin, epicatechin, apigenin, kaempferol, quercetin, quercetin diglucoside, quercetin 3-O-arabinosyl-glucoside) | 1303.0 ± 67.7 b | Not Reported | 90.1 ± 4.5 l | [63] | |
Phenolic acids (quinic acid, citric acid, 5-O-caffeoylquinic acid, caffeic acid, syringic acid, p-coumaric acid, ferulic acid, sinapic acid) | |||||||
Seed Coat | Maceration | Seed Coat residues were freeze-dried before extraction process. Solvent used 80% ethanol, incubated for 20 h at 40 °C. | Flavonoids (type B procyanidin dimers, type B procyanidin trimers, catechin, epicatechin, type A procyanidin dimers, type A procyanidin trimers) | 208.87 ± 11.67 a | 3.41 ± 0.36 f | 36.80 ± 11.03 i | [13] |
Phenolic acids (3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, tyrosol glucoside, salidroside) | |||||||
Terpenes (Penstemide) | |||||||
Leaves | Ultrasonic Extraction | The extracts were fermented with lactic acid bacteria. Dried fermented powder was dissolved in an 80/20 ethanol/water solution to the place in the ultrasonic bath. | Flavonoids (procyanidin dimer, procyanidin trimer, catechin diglucopyranoside, cinchonain, quercetin and quercetin derivatives, luteolin derivatives, cinchonain) | 17.34–30.72 b | Not Reported | 25.56–53.88 k | [9] |
Phenolic acids (protocatechuic acid-4-glucoside, p-coumaric acid, chlorogenic acid, sinapic acid-C-hexoside) | |||||||
Cooking (Water) | This study prepared water and ethanol extracts of avocado (Folium perseae) leaves. Both were referenced. For the ethanolic extract: extracted for 1 h. The extract was filtered and evaporated at 40 °C. The ethanolic residue of the first extraction was re-extracted under similar and stored at −20 °C until use. | Flavonoids (kaempferol, quercitrin, pyrogallol, luteolin-7-glucoside, rutin, isorhamnetin, kaempferon-3-O-rutinoside) | 0.092 d | 0.328 h | 601.001 o | [15] | |
Phenolic acids (fumaric acid, caffeic acid, chlorogenic acid) | |||||||
Maceration (Ethanol) | Flavonoids (herniarin, kaempferol, quercitrin, quercetin-3-O-arabinoside, quercetin, luteolin-7-glucoside, luteolin-5-glucoside, kaempferon-3-O-rutinoside, rutin, isorhamnetin) | 0.218 d | 1.480 h | 240.400 o | |||
Phenolic acids (gallic acid, fumaric acid, caffeic acid, ellagic acid, chlorogenic acid, rosmarinic acid) | |||||||
Microwave-assisted extraction | This study compared two different extraction methods; both were referenced. | Flavonoids (epicatechin, rutin, quercetin) | 9005.5–13,459.0 e | Not reported | 3.41 ± 0.24 p | [8] | |
Phenolic acids (gallic acid, protocatechuic acid, p-hydroxybenzoic acid, chlorogenic acid, p-coumaric acid, rosmarinic acid, cinnamic acid) | |||||||
Ohmic heating-assisted extraction | Flavonoids (epicatechin, rutin) | 24,223.7–31,737.8 e | Not reported | 2.96 ± 0.15 p | |||
Phenolic acids (protocatechuic acid, p-hydroxybenzoic acid, chlorogenic acid, cinnamic acid) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Féliz-Jiménez, A.; Sanchez-Rosario, R. Bioactive Compounds, Composition and Potential Applications of Avocado Agro-Industrial Residues: A Review. Appl. Sci. 2024, 14, 10070. https://doi.org/10.3390/app142110070
Féliz-Jiménez A, Sanchez-Rosario R. Bioactive Compounds, Composition and Potential Applications of Avocado Agro-Industrial Residues: A Review. Applied Sciences. 2024; 14(21):10070. https://doi.org/10.3390/app142110070
Chicago/Turabian StyleFéliz-Jiménez, Alejandra, and Ramon Sanchez-Rosario. 2024. "Bioactive Compounds, Composition and Potential Applications of Avocado Agro-Industrial Residues: A Review" Applied Sciences 14, no. 21: 10070. https://doi.org/10.3390/app142110070
APA StyleFéliz-Jiménez, A., & Sanchez-Rosario, R. (2024). Bioactive Compounds, Composition and Potential Applications of Avocado Agro-Industrial Residues: A Review. Applied Sciences, 14(21), 10070. https://doi.org/10.3390/app142110070