Numerical Investigation with Failure Characteristic Analysis and Support Effect Evaluation of Deep-Turning Roadways
<p>Location of Shoushan No. 1 Coal Mine.</p> "> Figure 2
<p>Geological profile of the study area.</p> "> Figure 3
<p>Schematic diagram of the numerical model.</p> "> Figure 4
<p>Support scheme applied in the numerical model.</p> "> Figure 5
<p>Deformation of the roadways at 700 m depth.</p> "> Figure 6
<p>Deformation of the roadways at 1200 m depth.</p> "> Figure 7
<p>The ratio of principal stresses and plastic zone distribution of the roadways at two different depths.</p> "> Figure 8
<p>Maximum principal stress distribution of the roadway with a 50.93 m turning radius.</p> "> Figure 9
<p>Maximum principal stress distribution of the roadway with a 101.85 m turning radius.</p> "> Figure 10
<p>Plastic zone distribution of the turning roadway.</p> "> Figure 11
<p>Contrast in the deformation of the turning roadway.</p> "> Figure 12
<p>Comparison of support effect.</p> ">
Abstract
:1. Introduction
2. Geological Conditions and Numerical Modeling
3. Results
3.1. The Influence of Stress (Depth) on the Failure of Surrounding Rocks of a Turning Roadway
3.2. The Influence of Turning Radius on the Failure of Surrounding Rocks of a Turning Roadway
3.3. The Difference in the Effect of Support Between the Straight and Turning Roadways
4. Conclusions
- (1)
- The asymmetric failure of the turning roadway shows noticeable stress sensitivity, meaning that it only occurs when the surrounding rock stress is sufficiently high (when the tunneling depth is great enough). Essentially, this is a change in the distribution of the plastic failure zone caused by the changes in the principal stress of the surrounding rocks.
- (2)
- The asymmetric failure of the turning roadway is independent of the turning radius. This conclusion was drawn after analyzing the distribution of the principal stress, the plastic zone, and the deformation of the roadway’s surrounding rocks.
- (3)
- The support actions of the roadway were investigated, and the results show that the reduction in deformation of the surrounding rocks is proportional to their natural deformation, and the support has an asymmetric supporting effect on the asymmetric deformation of the turning roadway.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, H. Research review of the state key research development program of China Deep rock mechanics and mining theory. J. China Coal Soc. 2019, 44, 1283–1305. [Google Scholar] [CrossRef]
- Xie, H.; Li, C.; He, Z.; Li, C.; Lu, Y.; Zhang, R.; Gao, M.; Gao, F. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths. Int. J. Rock Mech. Min. Sci. 2021, 138, 104548. [Google Scholar] [CrossRef]
- Gao, M.; Wang, M.; Yang, B.; Xie, J.; Wang, F.; Gao, Y.; Deng, G.; Hao, H.; Xie, H. In-situ disturbed mechanical behavior of deep coal rock. J. China Coal Soc. 2020, 45, 2691–2703. [Google Scholar]
- Xie, H.; Lu, J.; Li, C.; Li, M.; Gao, M. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. Int. J. Min. Sci. Technol. 2022, 32, 915–950. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, X.; Zhang, Z. Influences of tunnelling parameters in tunnel boring machine on stress and displacement characteristics of surrounding rocks. Tunn. Undergr. Space Technol. 2023, 137, 105129. [Google Scholar] [CrossRef]
- Barla, G.; Pelizza, S. TBM tunnelling in difficult ground conditions. In Proceedings of the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, 19–24 November 2000. [Google Scholar]
- Zheng, Y.; Zhang, Q.; Zhao, J. Challenges and opportunities of using tunnel boring machines in mining. Tunn. Undergr. Space Technol. 2016, 57, 287–299. [Google Scholar] [CrossRef]
- Tang, B.; Cheng, H.; Tang, Y.; Zheng, T.; Yao, Z.; Wang, C.; Rong, C. Supporting Design Optimization of Tunnel Boring Machines-Excavated Coal Mine Roadways: A Case Study in Zhangji, China. Processes 2020, 8, 46. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, X.; Liu, X.; Xu, C.; Li, X.; Song, D.; Ma, Q.; Hu, N. Real-time perception of rock–machine interaction information in TBM tunnelling using muck image analysis. Tunn. Undergr. Space Technol. 2023, 136, 105096. [Google Scholar] [CrossRef]
- De Bellis, M.L.; Della Vecchia, G.; Ortiz, M.; Pandolfi, A. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Eng. Geol. 2016, 215, 10–24. [Google Scholar] [CrossRef]
- Kang, H.; Zhang, X.; Si, L.; Wu, Y.; Gao, F. In-situ stress measurements and stress distribution characteristics in underground coal mines in China. Eng. Geol. 2010, 116, 333–345. [Google Scholar] [CrossRef]
- Tao, Z.; Zhou, D. Model test on deformation mechanism of tunnel at landslide site. J. Eng. Geol. 2003, 11, 323–327. [Google Scholar]
- Cheng, W.; Wang, W.; Huang, S.; Ma, P. Acoustic emission monitoring of rockbursts during TBM-excavated headrace tunneling at Jinping II hydropower station. J. Rock Mech. Geotech. Eng. 2013, 5, 486–494. [Google Scholar] [CrossRef]
- Hasanpour, R.; Schmitt, J.; Ozcelik, Y.; Rostami, J. Examining the effect of adverse geological conditions on jamming of a single shielded TBM in Uluabat tunnel using numerical modeling. J. Rock Mech. Geotech. Eng. 2017, 9, 1112–1122. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Q.; Shi, K.; Pan, Y.; Liu, J. Application and prospect of hard rock TBM for deep roadway construction in coal mines. Tunn. Undergr. Space Technol. 2018, 73, 105–126. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, Z.; Li, W.; Wang, F.; Jiang, B.; Wang, D.; Wang, H. Analysis of roof collapse mechanism and supporting measures in fault zone of coal roadway. Rock Soil Mech. 2012, 33, 3093–3102. [Google Scholar] [CrossRef]
- Fraldi, M.; Cavuoto, R.; Cutolo, A.; Guarracino, F. Stability of tunnels according to depth and variability of rock mass parameters. Int. J. Rock Mech. Min. Sci. 2019, 119, 222–229. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, D.; Wang, Z. Upper bound solutions for supporting pressures of shallow tunnels with nonlinear failure criterion. J. Cent. South Univ. 2013, 20, 2034–2040. [Google Scholar] [CrossRef]
- He, M.; Qi, G.; Cheng, C.; Zhang, G.; Sun, X. Deformation and damage mechanisms and coupling support design in deep coal roadway with compound roof. Chin. J. Rock Mech. Eng. 2007, 26, 987–993. [Google Scholar]
- Xu, X.; Wu, Z.; Liu, Q. An improved numerical manifold method for investigating the mechanism of tunnel supports to prevent large squeezing deformation hazards in deep tunnels. Comput. Geotech. 2022, 151, 104941. [Google Scholar] [CrossRef]
- Mitelman, A.; Elmo, D. Analysis of tunnel-support interaction using an equivalent boundary beam. Tunn. Undergr. Space Technol. 2019, 84, 218–226. [Google Scholar] [CrossRef]
- Jing, H.; Meng, Q.; Zhu, J.; Meng, B.; Yu, L. Theoretical and technical progress of stability control of broken rock zone of deep roadway surrounding rock. J. Min. Saf. Eng. 2020, 37, 429–442. [Google Scholar] [CrossRef]
- Liu, H.; Zuo, J.; Liu, D.; Li, C.; Xu, F.; Lei, B. Optimization of roadway bolt support based on orthogonal matrix analysis. J. Min. Saf. Eng. 2021, 38, 84–93. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, Q.; Xi, H.; Gong, G. Improved compound support system for coal mine tunnels in densely faulted zones: A case study of China’s Huainan coal field. Eng. Geol. 2018, 240, 10–20. [Google Scholar] [CrossRef]
- Xing, Y.; Kulatilake, P.H.S.W.; Sandbak, L.A. Rock Mass Stability Investigation Around Tunnels in an Underground Mine in USA. Geotech. Geol. Eng. 2016, 35, 45–67. [Google Scholar] [CrossRef]
- Xing, Y.; Kulatilake, P.H.S.W.; Sandbak, L.A. Investigation of Rock Mass Stability Around the Tunnels in an Underground Mine in USA Using Three-Dimensional Numerical Modeling. Rock Mech. Rock Eng. 2017, 51, 579–597. [Google Scholar] [CrossRef]
- Zhang, P.; Gearhart, D.; Dyke, M.V.; Su, D.; Esterhuizen, E.; Tulu, B. Ground response to high horizontal stresses during longwall retreat and its implications for longwall headgate support. Int. J. Min. Sci. Technol. 2019, 29, 27–33. [Google Scholar] [CrossRef]
- Qi, Y.; Wen, S.; Bai, M.; Shi, H.; Li, P.; Zhou, H.; He, B. Evaluation and Deformation Control Study on the Bias Pressure of Layered Rock Tunnels. Math. Probl. Eng. 2021, 2021, 9937678. [Google Scholar] [CrossRef]
- Guo, J. Roadway fracture mechanism and control technology of joint fissured surrounding rock in deep mines. J. China Coal Soc. 2012, 37, 1559–1563. [Google Scholar] [CrossRef]
Case No. | Model Size (m) | Tunnel Radius (m) | Tunnel Depth (m) | Turning Radius (m) | Cable Support |
---|---|---|---|---|---|
1 | 56 × 180 × 30 | 2.15 | 700 | 101.85 | No |
2 | 56 × 180 × 30 | 2.15 | 1200 | 101.85 | No |
3 | 77 × 153 × 30 | 2.15 | 1200 | 50.93 | No |
4 | 56 × 180 × 30 | 2.15 | 1200 | 101.85 | Yes |
Lithology | Density (kg/m) | Bulk Modulus (GPa) | Shear Modulus (GPa) | Internal Friction Angle (°) | Cohesion (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|---|
Sandy mudstone | 2520 | 5.34 | 1.30 | 40.12 | 0.48 | 0.80 |
Medium sandstone | 2600 | 5.01 | 1.22 | 35.86 | 0.51 | 1.32 |
Mudstone | 2400 | 4.04 | 1.12 | 34.78 | 0.40 | 1.20 |
Lithology | Residual Internal Friction Angle (°) | Residual Cohesion (MPa) | Residual Tensile Strength (MPa) | Plastic Shear Strain | Plastic Tensile Strain |
---|---|---|---|---|---|
Sandy mudstone | 32.10 | 0.19 | 0.32 | 4 × 10−3 | 6 × 10−3 |
Medium sandstone | 28.69 | 0.21 | 0.53 | 4 × 10−3 | 6 × 10−3 |
Mudstone | 27.82 | 0.16 | 0.48 | 4 × 10−3 | 6 × 10−3 |
Young’s Modulus of Bolt (MPa) | Cross-Sectional Area of Bolt (m²) | Tensile Yield Strength of Bolt (MN) | Bond Shear Stiffness (MN/m/m) | Bond Strength (MN/m) |
---|---|---|---|---|
200 × 103 | 3.14 × 10−4 | 153.9 × 10−3 | 5602 | 2.199 |
Cross-Section No. | Roof—Unsupported (mm) | Roof— Supported (mm) | Floor—Unsupported (mm) | Floor— Supported (mm) | Left Rib—Unsupported (mm) | Left Rib— Supported (mm) | Right Rib —Unsupported (mm) | Right Rib— Supported (mm) |
---|---|---|---|---|---|---|---|---|
1 | 228.22 | 181.79 | 224.53 | 204.23 | 162.49 | 138.40 | 231.38 | 202.74 |
2 | 284.08 | 221.46 | 184.22 | 159.14 | 154.11 | 131.33 | 223.31 | 191.43 |
3 | 223.35 | 180.45 | 189.15 | 177.87 | 193.57 | 166.03 | 214.75 | 180.37 |
4 | 213.13 | 173.69 | 170.69 | 159.54 | 170.17 | 142.02 | 206.59 | 165.95 |
5 | 243.71 | 195.42 | 206.31 | 190.10 | 238.45 | 208.07 | 174.40 | 158.89 |
6 | 259.94 | 207.93 | 209.17 | 191.78 | 219.69 | 180.82 | 186.25 | 167.65 |
7 | 228.05 | 187.78 | 182.97 | 166.23 | 188.59 | 161.68 | 194.49 | 154.96 |
8 | 237.88 | 176.38 | 212.29 | 196.15 | 142.05 | 124.29 | 111.16 | 99.63 |
9 | 238.97 | 176.42 | 141.00 | 133.29 | 130.57 | 115.89 | 128.94 | 114.02 |
10 | 172.21 | 144.23 | 155.54 | 144.84 | 147.8 | 132.19 | 142.94 | 124.092 |
11 | 169.95 | 141.50 | 155.51 | 142.48 | 168.88 | 148.02 | 138.18 | 117.27 |
12 | 185.36 | 153.76 | 150.56 | 138.82 | 158.78 | 135.73 | 134.77 | 113.91 |
13 | 181.12 | 148.04 | 177.66 | 163.87 | 164.27 | 140.42 | 137.83 | 117.82 |
14 | 174.95 | 146.15 | 172.04 | 160.13 | 161.56 | 137.85 | 108.21 | 97.69 |
15 | 193.58 | 161.64 | 163.87 | 150.45 | 142.17 | 120.38 | 99.74 | 82.99 |
16 | 150.72 | 127.60 | 162.19 | 150.23 | 126.40 | 109.53 | 68.77 | 62.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Ding, F.; Niu, Z.; Gao, Y.; Jiao, H.; Chen, Z. Numerical Investigation with Failure Characteristic Analysis and Support Effect Evaluation of Deep-Turning Roadways. Appl. Sci. 2024, 14, 10075. https://doi.org/10.3390/app142110075
Wang M, Ding F, Niu Z, Gao Y, Jiao H, Chen Z. Numerical Investigation with Failure Characteristic Analysis and Support Effect Evaluation of Deep-Turning Roadways. Applied Sciences. 2024; 14(21):10075. https://doi.org/10.3390/app142110075
Chicago/Turabian StyleWang, Man, Feng Ding, Zehua Niu, Yanan Gao, Huice Jiao, and Zhaofan Chen. 2024. "Numerical Investigation with Failure Characteristic Analysis and Support Effect Evaluation of Deep-Turning Roadways" Applied Sciences 14, no. 21: 10075. https://doi.org/10.3390/app142110075
APA StyleWang, M., Ding, F., Niu, Z., Gao, Y., Jiao, H., & Chen, Z. (2024). Numerical Investigation with Failure Characteristic Analysis and Support Effect Evaluation of Deep-Turning Roadways. Applied Sciences, 14(21), 10075. https://doi.org/10.3390/app142110075