Development and Validation of Concept of Innovative Method of Computer-Aided Monitoring and Diagnostics of Machine Components
<p>Tested object in the form of a 3D model of a shaft in the context of its operating conditions.</p> "> Figure 2
<p>The concept of a digital monitoring system coupled with the monitored object.</p> "> Figure 3
<p>Separated monitoring and diagnostic areas with the arrangement of sensors. (<b>a</b>) Critical areas of the analyzed shaft; (<b>b</b>) The arrangement of sensors detecting angular displacement at the ends of critical areas.</p> "> Figure 4
<p>Structure of a discrete physical model with four degrees of freedom.</p> "> Figure 5
<p>Graphical representation of the first three forms of torsional vibrations of the analyzed shaft along with their values.</p> "> Figure 6
<p>Scheme of dividing the drive shaft into RFE.</p> "> Figure 7
<p>Graphical representation of the formulated monitoring method using DS.</p> "> Figure 8
<p>Determination of reference characteristics using the developed methodology.</p> "> Figure 9
<p>Monitoring and diagnostics of the tested machine component state using the developed methodology.</p> ">
Abstract
:1. Introduction
2. Description of the Tested Machine Component
3. Digital Monitoring System
3.1. Mathematical Model of a Digital Monitoring System
- without damage,
- with damage,
3.2. Structure and Parameters of the Digital Monitoring System
4. Developed Testing Methodology and Test Results
4.1. Testing Methodology in the Planned Experiment
- The angular displacements are measured and recorded in the time domain using the adopted sensor system (sensors S1, S2, S3 and S4);
- The recorded angular displacements are transferred via co-simulation to the discrete model in digital form;
- Solving the task of determining the waveform of variability of the angular displacement of the inertial elements of the discrete model allows for the determination of the reference characteristics (S1w, S2w, S3w, S4w). It was assumed that the obtained waveforms constitute the “0 line” of reference in relation to the characteristics of the monitored machine component recorded in the same way.
4.2. Test Results
- Identify in the characteristics of the machine component’s state the form of deviation of the current characteristic from the reference characteristic consistent with theoretical considerations (the characteristics between two sensors defining the searched area with damage should form a minority sign when viewed from the bottom of the characteristics);
- If the state characteristics appear more than once in a form consistent with theoretical considerations, then the sum of the absolute values of deviations between the sensors monitoring these areas should be taken into account. The damaged area should have a higher value of the described sum (Table 2, items 2 to 4, Table 4, item 1).
- In the case of the state characteristics in accordance with Table 4, item 6 and Table 2, item 5, the sum of the absolute values of deviations between sensor monitoring areas where deviations of opposite signs occur should be additionally verified. The damaged area should be considered the area with the highest value of this sum (regardless of the shape of the deviation);
- If the form of the state characteristics does not contain deviations consistent with theoretical considerations (Table 4, items 2, 3, 5), it should be assumed that the damage occurs in the area near the sensor which recorded the largest deviation (in the analyzed cases, it was always the end of the monitored shaft).
- Introducing more sensors for narrowing the areas subject to monitoring and diagnostics;
- Extending the digital model with a model representing transverse vibrations;
- Determining, based on theoretical considerations, the form of the state characteristics in relation to areas lying outside the area of action of forces (torques) on the analyzed machine component.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aleš, Z.; Pavlů, J.; Legát, V.; Mošna, F.; Jurča, V. Methodology of overall equipment effectiveness calculation in the context of Industry 4.0 environment. Eksploat. Niezawodn.—Maint. Reliab. 2019, 21, 411–418. [Google Scholar] [CrossRef]
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Shyrin, L.; Herasymenko, A.; Inyutkin, I. Modelling the suspended monorail route stresses and deflections during the transport of heavy loads with use of diesel locomotives. Min. Mach. 2023, 41, 132–142. [Google Scholar] [CrossRef]
- Olszyna, G.; Tytko, A. A tool for determining the number of bends and places of accumulation of potential wear of steel ropes operating in the luffing systems of basic opencast mining machines. Min. Mach. 2022, 40, 229–237. [Google Scholar] [CrossRef]
- Gwiazda, A.; Herbuś, K.; Kost, G.; Ociepka, P. Designing mechatronics equipment based on the example of the stewart platform. Solid State Phenom. 2015, 220–221, 419–422. [Google Scholar] [CrossRef]
- Herbuś, K.; Szewerda, K.; Świder, J. Virtual prototyping of the suspended monorail in the aspect of increasing the permissible travel speed in hard coal mines. Eksploat. Niezawodn.—Maint. Reliab. 2020, 22, 610–619. [Google Scholar] [CrossRef]
- Ociepka, P.; Banaś, W.; Herbuś, K.; Kost, G. Simulator of the car for driving courses for the people with mobility impairments. Adv. Mater. Res. 2014, 1036, 817–822. [Google Scholar] [CrossRef]
- Szewerda, K.; Krenicky, T. Use of the MBS method in mining industry R&D projects. Min. Mach. 2022, 40, 110–120. [Google Scholar] [CrossRef]
- Abbate, R.; Caterino, M.; Fera, M.; Caputo, F. Maintenance digital twin using vibration data. Procedia Comput. Sci. 2022, 200, 546–555. [Google Scholar] [CrossRef]
- Bergs, T.; Gierlings, S.; Auerbach, T.; Klink Schraknepper, D.; Augspurger, T. The concept of digital twin and digital shadow in manufacturing. Procedia CIRP 2021, 101, 81–84. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterizing the digital twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital twin in manufacturing: A categorical literature review and classification. In Proceedings of the 16th IFAC Symposium on Information Control Problems in Manufacturing, Bergamo, Italy, 11–13 June 2018; Elsevier: Amsterdam, The Netherlands, 2018; Volume 51, pp. 1016–1022. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, C.; Wang, K.I.-K.; Huang, H.; Xu, X. Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robot. Comput.-Integr. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Mi, S.; Feng, Y.; Zheng, H.; Wang, Y.; Gao, Y.; Tan, J. Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework. J. Manuf. Syst. 2021, 58, 329–345. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- VanDerHorn, E.; Wang, Z.; Mahadevan, S. Towards a digital twin approach for vessel-specific fatigue damage monitoring and prognosis. Reliab. Eng. Syst. Saf. 2022, 219, 108222. [Google Scholar] [CrossRef]
- Duan, R.; Lin, Y.; Zeng, Y. Fault diagnosis for complex systems based on reliability analysis and sensors data considering epistemic uncertainty. Eksploat. Niezawodn.—Maint. Reliab. 2018, 20, 590–601. [Google Scholar] [CrossRef]
- Tang, D.; Sheng, W.; Yu, J. Dynamic condition-based maintenance policy for degrading systems described by a random-coefficient autoregressive model: A comparative study. Eksploat. Niezawodn.—Maint. Reliab. 2018, 20, 590–601. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Dui, H.; Wang, S.; Tomovic, M. Importance measure-based maintenance strategy considering maintenance costs. Eksploat. Niezawodn.—Maint. Reliab. 2022, 24, 15–24. [Google Scholar] [CrossRef]
- Kosmol, J. Monitoring, diagnostics and supervision (disscusible paper). Przetwórstwo Tworzyw 2015, 21, 22–26. (In Polish) [Google Scholar]
- Al-Haddad, L.A.; Giernacki, W.; Shandookh, A.A.; Jaber, A.A.; Puchalski, R. Vibration Signal Processing for Multirotor UAVs Fault Diagnosis: Filtering or Multiresolution Analysis? Eksploat. Niezawodn.—Maint. Reliab. 2024, 26, 176318. [Google Scholar] [CrossRef]
- Narendiranath Babu, T.; Manvel Raj, T.; Lakshmanan, T. A Review on Application of Dynamic Parameters of Journal Bearing for Vibration and Condition Monitoring. J. Mech. 2015, 31, 391–416. [Google Scholar] [CrossRef]
- Nowakowski, T.; Komorski, P. Diagnostics of the drive shaft bearing based on vibrations in the high-frequency range as a part of the vehicle’s self-diagnostic system. Eksploat. Niezawodn.—Maint. Reliab. 2022, 24, 70–79. [Google Scholar] [CrossRef]
- Puchalski, A.; Komorska, I. Generative modelling of vibration signals in machine maintenance. Eksploat. Niezawodn.—Maint. Reliab. 2023, 25, 173488. [Google Scholar] [CrossRef]
- Umbrajkaar, A.M.; Krishnamoorthy, A.; Dhumale, R.B. Vibration Analysis of Shaft Misalignment Using Machine Learning Approach under Variable Load Conditions. Shock Vib. 2020, 2020, 1650270. [Google Scholar] [CrossRef]
- Wang, T.; Han, Q.; Chu, F.; Feng, Z. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mech. Syst. Signal Process. 2019, 126, 662–685. [Google Scholar] [CrossRef]
- Chung, Y.; Lee, S.; Kim, W. Latest Advances in Common Signal Processing of Pulsed Thermography for Enhanced Detectability: A Review. Appl. Sci. 2021, 11, 12168. [Google Scholar] [CrossRef]
- Chung, Y.; Shrestha, R.; Lee, S.; Kim, W. Thermographic Inspection of Internal Defects in Steel Structures: Analysis of Signal Processing Techniques in Pulsed Thermography. Sensors 2020, 20, 6015. [Google Scholar] [CrossRef]
- Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components. Sensors 2018, 18, 609. [Google Scholar] [CrossRef]
- Dimitrova, M.; Aminzadeh, A.; Meiabadi, M.S.; Karganroudi, S.S.; Taheri, H.; Ibrahim, H. A Survey on Non-Destructive Smart Inspection of Wind Turbine Blades Based on Industry 4.0 Strategy. Appl. Mech. 2022, 3, 1299–1326. [Google Scholar] [CrossRef]
- Doshvarpassand, S.; Wu, C.; Wang, X. An Overview of Corrosion Defect Characterization Using Active Infrared Thermography. Infrared Phys. Technol. 2019, 96, 366–389. [Google Scholar] [CrossRef]
- Lee, S.; Chung, Y.; Shrestha, R.; Kim, W. Automated Defect Detection Using Threshold Value Classification Based on Thermographic Inspection. Appl. Sci. 2021, 11, 7870. [Google Scholar] [CrossRef]
- Prasad, B.S.; Prabha, K.A.; Kumar, P.V.S.G. Condition Monitoring of Turning Process Using Infrared Thermography Technique—An Experimental Approach. Infrared Phys. Technol. 2017, 81, 137–147. [Google Scholar] [CrossRef]
- Qu, Z.; Jiang, P.; Zhang, W. Development and Application of Infrared Thermography Non-Destructive Testing Techniques. Sensors 2020, 20, 3851. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Guan, L.; Feng, X.; Wang, L.; Yu, X. In-Situ Lubricating Oil Condition Sensoring Method Based on Two-Channel and Differential Dielectric Spectroscopy Combined with Supervised Hierarchical Clustering Analysis. Chemom. Intell. Lab. Syst. 2016, 158, 155–164. [Google Scholar] [CrossRef]
- Shinde, H.M.; Bewoor, A.K. Evaluating Petrol Engine Oil Deterioration through Oxidation and Nitration Parameters by Low-Cost IR Sensor. Appl. Petrochem. Res. 2020, 10, 83–94. [Google Scholar] [CrossRef]
- Wakiru, J.M.; Pintelon, L.; Muchiri, P.N.; Chemweno, P.K. A Review on Lubricant Condition Monitoring Information Analysis for Maintenance Decision Support. Mech. Syst. Signal Process. 2019, 118, 108–132. [Google Scholar] [CrossRef]
- Wolak, A.; Zając, G. The Kinetics of Changes in Kinematic Viscosity of Engine Oils under Similar Operating Conditions. Eksploat. Niezawodn.—Maint. Reliab. 2017, 19, 260–272. [Google Scholar] [CrossRef]
- Zhe, J.; Zhu, X.; Zhong, C. A High Sensitivity Wear Debris Sensor Using Ferrite Cores for Online Oil Condition Monitoring. Meas. Sci. Technol. 2017, 28, 75–102. [Google Scholar] [CrossRef]
- Zhu, X.; Zhong, C.; Zhe, J. Lubricating Oil Conditioning Sensors for Online Machine Health Monitoring—A Review. Tribol. Int. 2017, 109, 473–484. [Google Scholar] [CrossRef]
- Caggiano, A.; Zhang, J.; Alfieri, V.; Caiazzo, F.; Gao, R.; Teti, R. Machine learning-based image processing for on-line defect recognition in additive manufacturing. CIRP Ann. 2019, 68, 451–454. [Google Scholar] [CrossRef]
- Dutta, S.; Pal, S.K.; Sen, R. On-machine tool prediction of flank wear from machined surface images using texture analyses and support vector regression. Precis. Eng. 2016, 43, 34–42. [Google Scholar] [CrossRef]
- Kwon, Y.; Fischer, G.W. A novel approach to quantifying tool wear and tool life measurements for optimal tool management. Int. J. Mach. Tools Manuf. 2003, 43, 359–368. [Google Scholar] [CrossRef]
- Amarnath, M.; Sugumaran, V.; Kumar, H. Exploiting Sound Signals for Fault Diagnosis of Bearings Using Decision Tree. Measurement 2013, 46, 1250–1256. [Google Scholar] [CrossRef]
- Ghaderi, H.; Kabiri, P. Automobile Engine Condition Monitoring Using Sound Emission. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 1807–1826. [Google Scholar] [CrossRef]
- Li, Z.; Lv, Y.; Yuan, R.; Zhang, Q. Multi-Fault Diagnosis of Rotating Machinery via Iterative Multivariate Variational Mode Decomposition. Meas. Sci. Technol. 2022, 33, 125104. [Google Scholar] [CrossRef]
- Sharan, R.; Xiong, H.; Berkovsky, S. Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks. Sensors 2021, 21, 3434. [Google Scholar] [CrossRef]
- Shiri, H.; Wodecki, J.; Ziętek, B.; Zimroz, R. Inspection Robotic UGV Platform and the Proce-dure for an Acoustic Signal-Based Fault Detection in Belt Conveyor Idler. Energies 2021, 14, 7646. [Google Scholar] [CrossRef]
- Asad, B.; Vaimann, T.; Rassõlkin, A.; Kallaste, A.; Belahcen, A. Review of Electrical Machine Diagnostic Methods Applicability in the Perspective of Industry 4.0. Electr. Control Commun. Eng. 2018, 14, 108–116. [Google Scholar] [CrossRef]
- Chaulya, S.K.; Prasad, G.M. Formation of digital mine using the internet of things. In Sensing and Monitoring Technologies for Mines and Hazardous Areas; Elsevier: Amsterdam, The Netherlands, 2016; pp. 279–350. [Google Scholar] [CrossRef]
- Garcia-Calva, T.A.; Morinigo-Sotelo, D.; de Jesus Romero-Troncoso, R. Non-Uniform Time Resampling for Diagnosing Broken Rotor Bars in Inverter-Fed Induction Motors. IEEE Trans. Ind. Electron. 2017, 64, 2306–2315. [Google Scholar] [CrossRef]
- Li, M.; Lu, Q.; Bai, S.; Zhang, M.; Tian, H.; Qin, L. Digital twin-driven virtual sensor approach for safe construction operations of trailing suction hopper dredger. Autom. Constr. 2021, 132, 103961. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Sapena-Bano, A.; Pineda-Sanchez, M.; Puche-Panadero, R.; Martinez-Roman, J.; Matic, D. Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current’s FFT. IEEE Trans. Instrum. Meas. 2015, 64, 3137–3146. [Google Scholar] [CrossRef]
- Silvestri, L.; Forcina, A.; Introna, V.; Santolamazza, A.; Cesarotti, V. Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Comput. Ind. 2020, 123, 103335. [Google Scholar] [CrossRef]
- Wang, K.-J.; Lee, Y.-H.; Angelica, S. Digital twin design for real-time monitoring—A case study of die cutting machine. Int. J. Prod. Res. 2021, 59, 6471–6485. [Google Scholar] [CrossRef]
- Xiong, M.; Wang, H.; Fu, Q.; Xu, Y. Digital twin–driven aero-engine intelligent predictive maintenance. Int. J. Adv. Manuf. Technol. 2021, 114, 3751–3761. [Google Scholar] [CrossRef]
- Xu, B.; Sun, L.; Xu, L.; Xu, G. Improvement of the Hilbert Method via ESPRIT for Detecting Rotor Fault in Induction Motors at Low Slip. IEEE Trans. Energy Convers. 2013, 28, 225–233. [Google Scholar] [CrossRef]
- Yahia, K.; Cardoso, A.J.M.; Ghoggal, A.; Zouzou, S.-E. Induction Motors Broken Rotor Bars Diagnosis Through the Discrete Wavelet Transform of the Instantaneous Reactive Power Signal under Time-varying Load Conditions. Electr. Power Compon. Syst. 2014, 42, 682–692. [Google Scholar] [CrossRef]
- You, Y.; Chen, C.; Hu, F.; Liu, Y.; Ji, Z. Advances of digital twins for predictive maintenance. Procedia Comput. Sci. 2022, 200, 1471–1480. [Google Scholar] [CrossRef]
- Yu, J.; Liu, P.; Li, Z. Hybrid modelling and digital twin development of a steam turbine control stage for online performance monitoring. Renew. Sustain. Energy Rev. 2020, 133, 110077. [Google Scholar] [CrossRef]
- Zonta, T.; da Costa, C.A.; Righi, R.d.R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Malla, C.; Panigrahi, I. Review of Condition Monitoring of Rolling Element Bearing Using Vibration Analysis and Other Techniques. J. Vib. Eng. Technol. 2019, 7, 407–414. [Google Scholar] [CrossRef]
- Souflas, I.; Pezouvanis, A.; Ebrahimi, K. Health monitoring system for transmission shafts based on adaptive parameter identification. Mech. Syst. Signal Process. 2018, 104, 673–687. [Google Scholar] [CrossRef]
- Chin, C.; Abdullah, S.; Ariffin, A.; Singh, S.; Arifin, A. A review of the wavelet transform for durability and structural health monitoring in automotive applications. Alex. Eng. J. 2024, 99, 204–216. [Google Scholar] [CrossRef]
- Rehman, S.U.; Usman, M.; Toor, M.H.Y.; Hussaini, Q.A. Advancing structural health monitoring: A vibration-based IoT approach for remote real-time systems. Sens. Actuators A Phys. 2024, 365, 114863. [Google Scholar] [CrossRef]
- Mei, S.; Yuan, M.; Cui, J.; Dong, S.; Zhao, J. Machinery condition monitoring in the era of industry 4.0: A relative degree of contribution feature selection and deep residual network combined approach. Comput. Ind. Eng. 2022, 168, 108129. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Li, X.; Qin, Y.; Tang, B. Health indicator based on signal probability distribution measures for machinery condition monitoring. Mech. Syst. Signal Process. 2023, 198, 110460. [Google Scholar] [CrossRef]
- Xie, J.; Liu, J.; Chen, J.; Zi, Y. Blade damage monitoring method base on frequency domain statistical index of shaft’s random vibration. Mech. Syst. Signal Process. 2022, 165, 108351. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, S.; Dong, J.; Wang, S.; Xia, C. Online monitoring method of non-cylindrical wheel wear for gear grinding based on dynamic force model. Mech. Syst. Signal Process. 2024, 206, 110915. [Google Scholar] [CrossRef]
- Thibault, N.; Bourdon, A.; Rémond, D.; Lecouvreur, D. Dynamic models for power transmission monitoring in non-stationary conditions based on IAS signals. Mech. Mach. Theory 2024, 201, 105733. [Google Scholar] [CrossRef]
- Karyofyllas, G.; Giagopoulos, D. Condition monitoring framework for damage identification in CFRP rotating shafts using Model-Driven Machine learning techniques. Eng. Fail. Anal. 2024, 158, 108052. [Google Scholar] [CrossRef]
- Deraemaeker, A.; Preumont, A. Vibration based damage detection using large array sensors and spatial filters. Mech. Syst. Signal Process. 2006, 20, 1615–1630. [Google Scholar] [CrossRef]
- Bahlous, S.E.O.; Abdelghani, M.; Smaoui, H.; El-Borgi, S. A Modal Filtering and Statistical Approach for Damage Detection and Diagnosis in Structures using Ambient Vibrations Measurements. J. Vib. Control 2007, 13, 281–308. [Google Scholar] [CrossRef]
- Mendrok, K.; Uhl, T. Overview of modal model based damage detection methods. In Proceedings of the 2004 ISMA, Leuven, Belgium, 20–22 September 2004. [Google Scholar]
- Sohn, H.; Law, K.H. Extraction of Ritz Vectors from Vibration Test Data. Mech. Syst. Signal Process. 2001, 15, 213–226. [Google Scholar] [CrossRef]
- Mendrok, K. Comparison of Damage Detection Methods in Aspect of Their Automation Ability. DIAGNOSTYKA 2007. Available online: http://www.diagnostyka.net.pl/DIAGNOSTYKA-3-43-2007,81338,0,2.html (accessed on 25 October 2024). (In Polish).
- Mohamed, A.; Neilson, R.; MacConnell, P.; Renton, N.; Deans, W. Monitoring of Fatigue Crack Stages in a High Carbon Steel Rotating Shaft Using Vibration. Procedia Eng. 2011, 10, 130–135. [Google Scholar] [CrossRef]
- Valdez-Yepez, R.; Tutivén, C.; Vidal, Y. Structural health monitoring of jacket-type support structures in offshore wind turbines: A comprehensive dataset for bolt loosening detection through vibrational analysis. Data Brief 2024, 53, 110222. [Google Scholar] [CrossRef]
- Chen, B.; Zang, C. Artificial immune pattern recognition for structure damage classification. Comput. Struct. 2009, 87, 1394–1407. [Google Scholar] [CrossRef]
- Anaya, M.; Tibaduiza, D.; Pozo, F. Data driven methodology based on artificial immune systems for damage detection. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014. [Google Scholar]
- Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M. Negative Selection Algorithm for Aircraft Fault Detection. Artificial Immune Systems. In Artificial Immune Systems, Proceedings of the ICARIS 2004, Catania, Italy, 13–16 September 2004; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3239, p. 3239. [Google Scholar] [CrossRef]
- Meyes, R.; Donauer, J.; Schmeing, A.; Meisen, T. A Recurrent Neural Network Architecture for Failure Prediction in Deep Drawing Sensory Time Series Data. Procedia Manuf. 2019, 34, 789–797. [Google Scholar] [CrossRef]
- Kutyłowska, M. Neural network approach for failure rate prediction. Eng. Fail. Anal. 2015, 47, 41–48. [Google Scholar] [CrossRef]
- Khakzad, N.; Khan, F.; Amyotte, P.; Cozzani, V. Domino effect analysis using Bayesian networks. Risk Anal. 2013, 33, 292–306. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Z. Analysis of uncertainty propagation path of fire-induced domino effect based on an approach of layered fuzzy Petri nets. Chem. Eng. Sci. 2023, 268, 118410. [Google Scholar] [CrossRef]
- Yan, A.; Wang, W.; Zhang, C.; Zhao, H. A fault prediction method that uses improved case-based reasoning to continuously predict the status of a shaft furnace. Inf. Sci. 2014, 259, 269–281. [Google Scholar] [CrossRef]
- Dou, D.; Yang, J.; Liu, J.; Zhao, Y. A rule-based intelligent method for fault diagnosis of rotating machinery. Knowl.-Based Syst. 2012, 36, 1–8. [Google Scholar] [CrossRef]
- Bruyneel, M.; Naito, T.; Urushiyama, Y.; McDougall, S. Predictive Simulations of Damage Propagation in Laminated Composite Materials and Structures with LMS Samtech Samcef. In Proceedings of the SAE 2015 World Congress, Detroit, MI, USA, 21–23 April 2015; Conference Paper in SAE Technical Papers. [Google Scholar] [CrossRef]
- Frick, N.; Terwolbeck, J.; Seibel, B.; Metternich, J. Design Model for the Digital Shadow of a Value Stream. Systems 2024, 12, 20. [Google Scholar] [CrossRef]
- Liebenberg, M.; Jarke, M. Information Systems Engineering with Digital Shadows: Concept and Case Studies. In Advanced Information Systems Engineering, Proceedings of the 32nd International Conference, CAiSE 2020, Grenoble, France, 8–12 June 2020; Springer: Cham, Switzerland, 2020; pp. 70–84. [Google Scholar] [CrossRef]
- Liebenberg, M.; Jarke, M. Information systems engineering with Digital Shadows: Concept and use cases in the Internet of Production. Inf. Syst. 2023, 114, 102182. [Google Scholar] [CrossRef]
- Dymarek, A.; Dzitkowski, T.; Banaś, W. Sposób oceny stopnia zużycia obiektów narażonych na działanie obciążeń dynamicznych; Politechnika Śląska: Gliwice, Poland, 2023; p. 446566. [Google Scholar]
- Dymarek, A.; Dzitkowski, T. The use of synthesis methods in position optimisation and selection of tuned mass damper (TMD) parameters for systems with many degrees of freedom. Arch. Control Sci. 2021, 31, 185–211. [Google Scholar] [CrossRef]
- Dzitkowski, T.; Dymarek, A.; Margielewicz, J.; Gąska, D.; Orzech, L.; Lesiak, K. Designing of drive systems in the aspect of the desired spectrum of operation. Energies 2021, 14, 2562. [Google Scholar] [CrossRef]
- Białas, K.; Dymarek, A.; Dzitkowski, T. Impact of 3D printer vibration reduction on the quality of its printout. Int. J. Mod. Manuf. Technol. 2023, 15, 79–90. [Google Scholar] [CrossRef]
i | ci [Nm/rad] | |||||
---|---|---|---|---|---|---|
1 | 44.311 | 47.100 | 89.152 | 113.457 | 281.482 | 290.282 |
2 | 906.273 | 344.402 | 176.354 | 906.689 | 345.517 | 176.508 |
3 | 200.305 | 495.875 | 511.619 | 78.194 | 83.189 | 156.993 |
Geometric Form and Place of Damage | Characteristics of Monitored Machine Component State | Deviation of the Characteristics [rad] | Volume Loss [%] | Natural Vibrations Frequency [Hz] |
---|---|---|---|---|
No damage | 0 | |||
0.02 | ||||
0.05 | ||||
0.05 | ||||
0.06 | ||||
0.03 | ||||
0.06 |
Geometric Form and Place of Damage | Characteristics of Monitored Machine Component State | Deviation of the Characteristics [rad] | Volume Loss [%] | Natural Vibrations Frequency [Hz] |
---|---|---|---|---|
0.07 | ||||
0.06 | ||||
0.03 | ||||
0.04 | ||||
0.07 | ||||
0.07 |
Geometric Form and Place of Damage | Characteristics of Monitored Machine Component State | Deviation of the Characteristics [rad] | Volume Loss [%] | Natural Vibrations Frequency [Hz] |
---|---|---|---|---|
0.07 | ||||
0.02 | ||||
0.06 | ||||
0.06 | ||||
0.06 | ||||
0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herbuś, K.; Dymarek, A.; Ociepka, P.; Dzitkowski, T.; Grabowik, C.; Szewerda, K.; Białas, K.; Monica, Z. Development and Validation of Concept of Innovative Method of Computer-Aided Monitoring and Diagnostics of Machine Components. Appl. Sci. 2024, 14, 10056. https://doi.org/10.3390/app142110056
Herbuś K, Dymarek A, Ociepka P, Dzitkowski T, Grabowik C, Szewerda K, Białas K, Monica Z. Development and Validation of Concept of Innovative Method of Computer-Aided Monitoring and Diagnostics of Machine Components. Applied Sciences. 2024; 14(21):10056. https://doi.org/10.3390/app142110056
Chicago/Turabian StyleHerbuś, Krzysztof, Andrzej Dymarek, Piotr Ociepka, Tomasz Dzitkowski, Cezary Grabowik, Kamil Szewerda, Katarzyna Białas, and Zbigniew Monica. 2024. "Development and Validation of Concept of Innovative Method of Computer-Aided Monitoring and Diagnostics of Machine Components" Applied Sciences 14, no. 21: 10056. https://doi.org/10.3390/app142110056
APA StyleHerbuś, K., Dymarek, A., Ociepka, P., Dzitkowski, T., Grabowik, C., Szewerda, K., Białas, K., & Monica, Z. (2024). Development and Validation of Concept of Innovative Method of Computer-Aided Monitoring and Diagnostics of Machine Components. Applied Sciences, 14(21), 10056. https://doi.org/10.3390/app142110056