A Taxonomic Survey of Physics-Informed Machine Learning
<p>The popular PINN architecture aptly exemplifies the three biases informing learning processes: (1) learning bias, (2) inductive bias, and (3) observational bias.</p> "> Figure 2
<p>Diagram depicting the correlation of taxonomic categories also displayed in <a href="#applsci-13-06892-t001" class="html-table">Table 1</a>.</p> "> Figure 3
<p>Flow chart of the physics-informed machine learning pipeline as a parallel to traditional multiphysics modeling.</p> "> Figure 4
<p>Example schematics of observational, inductive, and learning biases. These categories can be interpreted with broad applicability and have only been represented by singular examples.</p> ">
Abstract
:1. Introduction
2. Taxonomy
2.1. Driver
2.2. Bias
2.3. Taxonomy Tableau
3. Discussion of Relevant Applications
3.1. Domain Decomposition
3.2. Neural Operator Learning
3.3. Physics-Informed Neural Operators
3.4. Learning Processes
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Z.; Wang, S.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks for Heat Transfer Problems. J. Heat Transf. 2021, 143, 060801. [Google Scholar] [CrossRef]
- Nguyen, L.; Raissi, M.; Seshaiyer, P. Modeling, Analysis and Physics Informed Neural Network approaches for studying the dynamics of COVID-19 involving human-human and human-pathogen interaction. Comput. Math. Biophys. 2022, 10, 1–17. [Google Scholar] [CrossRef]
- Cai, M.; Karniadakis, G.E.; Li, C. Fractional SEIR model and data-driven predictions of COVID-19 dynamics of Omicron variant. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 071101. [Google Scholar] [CrossRef]
- Costabal, F.S.; Yang, Y.; Perdikaris, P.; Hurtado, D.E.; Kuhl, E. Physics-Informed Neural Networks for Cardiac Activation Mapping. Front. Phys. 2020, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Kissas, G.; Yang, Y.; Hwuang, E.; Witschey, W.R.; Detre, J.A.; Perdikaris, P. Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2019, 358, 112623. [Google Scholar] [CrossRef]
- Grandits, T.; Pezzuto, S.; Costabal, F.S.; Perdikaris, P.; Pock, T.; Plank, G.; Krause, R. Learning Atrial Fiber Orientations and Conductivity Tensors from Intracardiac Maps Using Physics-Informed Neural Networks. Funct. Imaging Model. Heart 2021, 650–658. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Raissi, M.; Wang, Z.; Triantafyllou, M.S.; Karniadakis, G.E. Deep learning of vortex-induced vibrations. J. Fluid Mech. 2018, 861, 119–137. [Google Scholar] [CrossRef] [Green Version]
- Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput. Phys. 2018, 357, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Raissi, M. Deep Hidden physics-Models: Deep Learning of Nonlinear Partial Differential Equations. J. Mach. Learn. Res. 2018, 19, 1–24. Available online: https://www.jmlr.org/papers/volume19/18-046/18-046.pdf?ref=https://githubhelp.com (accessed on 9 January 2023).
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems. arXiv 2018, arXiv:1801.01236. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2018, 378, 686–707. [Google Scholar] [CrossRef]
- Wang, J.X.; Wu, J.L.; Xiao, H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2017, 2, 034603. [Google Scholar] [CrossRef] [Green Version]
- Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018, 375, 1339–1364. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Jentzen, A.; E, W. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, 8505–8510. [Google Scholar] [CrossRef] [Green Version]
- Rudy, S.H.; Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Data-driven discovery of partial differential equations. Sci. Adv. 2017, 3, e1602614. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.; Lu, Y.; Ma, X.; Dong, B. PDE-Net: Learning PDEs from Data. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Available online: http://proceedings.mlr.press/v80/long18a.html?ref=https://githubhelp.com (accessed on 4 May 2023).
- Leake, C.; Mortari, D. Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential Equations. Mach. Learn. Knowl. Extr. 2020, 2, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.L.; Xiao, H.; Paterson, E. Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Phys. Rev. Fluids 2018, 3, 074602. [Google Scholar] [CrossRef] [Green Version]
- Jagtap, A.D.; Karniadakis, G.E. Extended Physics-Informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations. Commun. Comput. Phys. 2020, 28, 2002–2041. [Google Scholar] [CrossRef]
- Hu, Z.; Jagtap, A.D.; Karniadakis, G.E.; Kawaguchi, K. When Do Extended Physics-Informed Neural Networks (XPINNs) Improve Generalization? SIAM J. Sci. Comput. 2022, 44, A3158–A3182. [Google Scholar] [CrossRef]
- Shukla, K.; Jagtap, A.D.; Karniadakis, G.E. Parallel physics-informed neural networks via domain decomposition. J. Comput. Phys. 2021, 447, 110683. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Mao, Z.; Adams, N.; Karniadakis, G.E. Physics-informed neural networks for inverse problems in supersonic flows. J. Comput. Phys. 2022, 466, 111402. [Google Scholar] [CrossRef]
- Papadopoulos, L.; Bakalakos, S.; Nikolopoulos, S.; Kalogeris, I.; Papadopoulos, V. A computational framework for the indirect estimation of interface thermal resistance of composite materials using XPINNs. Int. J. Heat Mass Transf. 2023, 200, 123420. [Google Scholar] [CrossRef]
- Hu, Z.; Jagtap, A.D.; Karniadakis, G.E.; Kawaguchi, K. Augmented Physics-Informed Neural Networks (APINNs): A gating network-based soft domain decomposition methodology. arXiv 2022, arXiv:2211.08939. [Google Scholar] [CrossRef]
- Xu, K.; Zhu, W.; Darve, E. Distributed Machine Learning for Computational Engineering using MPI. arXiv 2020, arXiv:2011.01349. [Google Scholar] [CrossRef]
- Liu, X.; Tao, F.; Du, H.; Yu, W.; Xu, K. Learning Nonlinear Constitutive Laws Using Neural Network Models Based on Indirectly Measurable Data. J. Appl. Mech. 2020, 87, 081003. [Google Scholar] [CrossRef]
- Xu, K.; Darve, E. Physics constrained learning for data-driven inverse modeling from sparse observations. J. Comput. Phys. 2022, 453, 110938. [Google Scholar] [CrossRef]
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; An kumar, A. Fourier Neural Operator for Parametric Partial Differential Equations. arXiv 2020, arXiv:2010.0889. [Google Scholar] [CrossRef]
- Kovachki, N.; Lanthaler, S.; Mishra, S. On Universal Approximation and Error Bounds for Fourier Neural Operators. J. Mach. Learn. Res. 2021, 22, 13237–13312. Available online: https://www.jmlr.org/papers/volume22/21-0806/21-0806.pdf (accessed on 12 January 2023).
- Deng, B.; Shin, Y.; Lu, L.; Zhang, Z.; Karniadakis, G.E. Convergence rate of DeepONets for learning operators arising from advection-diffusion equations. arXiv 2023, arXiv:2102.10621. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, H.; Kovachki, N.; Jin, D.; Chen, H.; Liu, B.; Azizzadenesheli, K.; An kumar, A. Physics-Informed Neural Operator for Learning Partial Differential Equations. arXiv 2022, arXiv:2111.03794. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Perdikaris, P.; Lee, D.; Ozkaya-Ahmadov, T.; Kwon, J.; Liu, Y.V.; Wu, Q.; Guo, J. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Sci. Adv. 2021, 7, eabi8605. [Google Scholar] [CrossRef]
- Goswami, S.; Bora, A.; Yu, Y.; Karniadakis, G.E. Physics-Informed Deep Neural Operator Networks. arXiv 2022, arXiv:2207.05748. [Google Scholar] [CrossRef]
- Schiassi, E.; Furfaro, R.; Leake, C.; De Florio, M.; Johnston, H.; Mortari, D. Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 2021, 457, 334–356. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 2019, 404, 109136. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Qiu, W.; Shi, Z.; Pan, S.; Deng, S. Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics. J. Phys. Chem. A 2021, 125, 8098–8106. [Google Scholar] [CrossRef]
- Weng, Y.; Zhou, D. Multiscale Physics-Informed Neural Networks for Stiff Chemical Kinetics. J. Phys. Chem. A 2022, 126, 8534–8543. [Google Scholar] [CrossRef]
- Pang, G.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional Physics-Informed Neural Networks. SIAM J. Sci. Comput. 2019, 41, A2603–A2626. [Google Scholar] [CrossRef] [Green Version]
- Jagtap, A.D.; Mitsotakis, D.; Karniadakis, G.E. Deep learning of inverse water waves problems using multi-fidelity data: Application to Serre-Green-Naghdi equations. Ocean Eng. 2022, 248, 110775. [Google Scholar] [CrossRef]
- McClenny, L.; Braga-Neto, U. Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism. arXiv 2022, arXiv:2009.04544. [Google Scholar] [CrossRef]
- Rodriguez-Torrado, R.; Ruiz, P.; Cueto-Felgueroso, L.; Green, M.C.; Friesen, T.; Matringe, S.; Togelius, J. Physics-informed attention-based neural network for hyperbolic partial differential equations: Application to the Buckley-Leverett problem. Sci. Rep. 2022, 12, 7557. [Google Scholar] [CrossRef] [PubMed]
- Schiassi, E.; De Florio, M.; Ganapol, B.D.; Picca, P.; Furfaro, R. Physics-informed neural networks for the point kinetics equations for nuclear reactor dynamics. Ann. Nucl. Energy 2021, 167, 108833. [Google Scholar] [CrossRef]
- Schiassi, E.; D’ambrosio, A.; Drozd, K.; Curti, F.; Furfaro, R. Physics-Informed Neural Networks for Optimal Planar Orbit Transfers. J. Spacecr. Rocket. 2022, 59, 834–849. [Google Scholar] [CrossRef]
- De Florio, M.; Schiassi, E.; Ganapol, B.D.; Furfaro, R. Physics-informed neural networks for rarefied-gas dynamics: Thermal creep flow in the Bhatnagar-Gross-Krook approximation. Phys. Fluids 2021, 33, 047110. [Google Scholar] [CrossRef]
- De Ryck, T.; Jagtap, A.D.; Mishra, S. Error estimates for physics informed neural networks approximating the Navier-Stokes equations. arXiv 2022, arXiv:2203.09346. [Google Scholar] [CrossRef]
- Kharazmi, E.; Zhang, Z.; Karniadakis, G.E. hp-VPINNs: Variational physics-informed neural networks with domain decomposition. Comput. Methods Appl. Mech. Eng. 2021, 374, 113547. [Google Scholar] [CrossRef]
- Lu, L.; Jin, P.; Karniadakis, G.E. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv 2019, arXiv:1910.03193. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, M.; Tan, Q.; Kartha, Y.; Lu, L. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2023, 403, 115671. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Perdikaris, P. On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2021, 384, 113938. [Google Scholar] [CrossRef]
- Wang, S.; Yu, X.; Perdikaris, P. When and why PINNs fail to train: A neural tangent kernel perspective. J. Comput. Phys. 2022, 449, 110768. [Google Scholar] [CrossRef]
- Mishra, S.; Molinaro, R. Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs. IMA J. Numer. Anal. 2021, 42, 981–1022. [Google Scholar] [CrossRef]
- Krishnapriyan, A.; Gholami, A.; Zhe, S.; Kirby, R.; Mahoney, M.W. Characterizing possible failure modes in physics-informed neural networks. Adv. Neural Inf. Process. Syst. 2021, 34. Available online: https://proceedings.neurips.cc/paper/2021/hash/df438e5206f31600e6ae4af72f2725f1-Abstract.html (accessed on 13 January 2023).
Physics-Model Driven | Physics-Data Driven | Observ. Bias | Inductive Bias | Learning Bias | |
---|---|---|---|---|---|
[4] | X | X | X | ||
[5] | X | X | X | ||
[6] | X | X | |||
[7] | X | X | X | ||
[8] | X | X | |||
[10] | X | X | X | ||
[16] | X | X | X | X | |
[17] | X | X | X | X | |
[18] | X | X | X | ||
[19] | X | X | X | ||
[20] | X | X | |||
[11] | X | X | |||
[12] | X | X | X | X | X |
[13] | X | X | X | X | X |
[14] | X | X | X | X | X |
[15] | X | X | X | ||
[21] | X | X | X | ||
[22] | X | X | X | X | X |
[23] | X | X | X | X | X |
[24] | X | X | X | X | X |
[25] | X | X | X | X | X |
[26] | X | X | X | X | X |
[27] | X | X | X | X | X |
[28] | X | X | X | X | X |
[29] | X | X | X | X | |
[30] | X | X | X | X | |
[31] | X | X | X | X | |
[32] | X | X | X | ||
[33] | X | X | X | ||
[34] | X | X | X | ||
[35] | X | X | X | X | X |
[36] | X | X | X | X | X |
[37] | X | X | X | X | X |
[38] | X | X | |||
[39] | X | X | X | X | X |
[40] | X | X | X | X | X |
[41] | X | X | X | X | X |
[42] | X | X | X | X | X |
[43] | X | X | X | X | X |
[44] | X | X | X | X | X |
[45] | X | X | X | X | X |
[38] | X | X | X | X | X |
[46] | X | X | X | X | X |
[47] | X | X | X | X | X |
[48] | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pateras, J.; Rana, P.; Ghosh, P. A Taxonomic Survey of Physics-Informed Machine Learning. Appl. Sci. 2023, 13, 6892. https://doi.org/10.3390/app13126892
Pateras J, Rana P, Ghosh P. A Taxonomic Survey of Physics-Informed Machine Learning. Applied Sciences. 2023; 13(12):6892. https://doi.org/10.3390/app13126892
Chicago/Turabian StylePateras, Joseph, Pratip Rana, and Preetam Ghosh. 2023. "A Taxonomic Survey of Physics-Informed Machine Learning" Applied Sciences 13, no. 12: 6892. https://doi.org/10.3390/app13126892
APA StylePateras, J., Rana, P., & Ghosh, P. (2023). A Taxonomic Survey of Physics-Informed Machine Learning. Applied Sciences, 13(12), 6892. https://doi.org/10.3390/app13126892