Measurement Repeatability of Rail Wheel Loads Caused by Rolling Surface Damages
<p>Wheel measurement template and measurement with a ruler.</p> "> Figure 2
<p>Main nature of damage of wheel rolling surface.</p> "> Figure 3
<p>Sample of wagon wheel damage—flat.</p> "> Figure 4
<p>Main reasons of wheel flat formation.</p> "> Figure 5
<p>Wheelset oscillation of on the track.</p> "> Figure 6
<p>Used measurement systems: (<b>a</b>) regular system ATLAS-LG; (<b>b</b>) specially designed system IC VEIP.</p> "> Figure 7
<p>Example of application of box and whisker principle.</p> "> Figure 8
<p>Correlation of measured values of basic vertical forces according to measurement systems.</p> "> Figure 9
<p>Correlation of measured values of maximal vertical forces according to measurement systems.</p> "> Figure 10
<p>Two cracks in the wagon’s first wheelset wheel.</p> "> Figure 11
<p>Maximal force values of loaded wagon.</p> "> Figure 12
<p>Values of <span class="html-italic">Q<sub>M</sub></span>, considering the maximal forces of loaded wagon.</p> "> Figure 13
<p>Values of maximal forces of unloaded goods wagon.</p> "> Figure 14
<p>Values of <span class="html-italic">Q<sub>M</sub></span>, considering the maximal forces when unloaded goods wagon.</p> "> Figure 15
<p>Mean values of vertical force when the wagon is loaded.</p> "> Figure 16
<p>Values of the indicator <span class="html-italic">Q<sub>M</sub></span>, according to the mean vertical forces of loaded wagon.</p> "> Figure 17
<p>Vertical force mean values of unloaded wagon.</p> "> Figure 18
<p>Values of <span class="html-italic">Q<sub>M</sub></span> considering to the mean vertical forces of unloaded goods wagon.</p> "> Figure 19
<p>Wheel damage—flat and cracks.</p> "> Figure 20
<p>Maximal force values of loaded wagon (the second iteration).</p> "> Figure 21
<p>Values <span class="html-italic">Q<sub>M</sub></span> considering the loaded wagon maximal vertical forces.</p> "> Figure 22
<p>Maximal force values of unloaded goods wagon.</p> "> Figure 23
<p>Values of <span class="html-italic">Q<sub>M</sub></span> considering to the maximal vertical forces of unloaded goods wagon.</p> "> Figure 24
<p>Vertical force mean values of loaded goods wagon.</p> "> Figure 25
<p>Values of <span class="html-italic">Q<sub>M</sub></span> considering the mean vertical forces of loaded goods wagon.</p> "> Figure 26
<p>Vertical force mean values of unloaded goods wagon.</p> "> Figure 27
<p>Values of <span class="html-italic">Q<sub>M</sub></span> considering the unloaded wagon mean vertical forces.</p> "> Figure 28
<p>Normalized <span class="html-italic">Q</span><sub>M</sub> values according to the running speed.</p> ">
Abstract
:1. Introduction
- Damages that cause a short-term loss of wheel–rail adhesion (cracks, flats, bends);
- Damages that do not cause loss of wheel–rail adhesion (e.g., uneven wear).
2. Analysis of Rolling-Stock Wheel-Rolling Surface Damage
3. Research Methodology
4. Measurement of Vertical Forces Caused by Wheel Damages
5. Distribution of Values of Wheel Vertical Forces
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bureika, G.; Vaičiūnas, G.; Shi, D.; Zanuy, A.C. Influence of Track Geometry Condition Monitoring on Railway Infrastructure Maintenance Processing. Transp. Probl. 2022, 17, 211–220. [Google Scholar] [CrossRef]
- Weston, P.F.; Ling, C.S.; Roberts, C.; Goodman, C.J.; Li, P.; Goodall, R.M. Monitoring Vertical Track Irregularity from In-Service Railway Vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016, 221, 75–88. [Google Scholar] [CrossRef]
- Ramalho, A. Wear Modelling in Rail–Wheel Contact. Wear 2015, 330–331, 524–532. [Google Scholar] [CrossRef]
- Meymand, S.Z.; Keylin, A.; Ahmadian, M. A Survey of Wheel–Rail Contact Models for Rail Vehicles. Veh. Syst. Dyn. 2016, 54, 386–428. [Google Scholar] [CrossRef]
- Aalami, M.R.; Anari, A.; Shafighfard, T.; Talatahari, S. A Robust Finite Element Analysis of the Rail-Wheel Rolling Contact. Adv. Mech. Eng. 2013, 5, 272350. [Google Scholar] [CrossRef]
- Thakkar, N.A.; Steel, J.A.; Reuben, R.L. Rail–Wheel Interaction Monitoring Using Acoustic Emission: A Laboratory Study of Normal Rolling Signals with Natural Rail Defects. Mech. Syst. Signal Process. 2010, 24, 256–266. [Google Scholar] [CrossRef]
- Roy, T.; Lai, Q.; Abrahams, R.; Mutton, P.; Paradowska, A.; Soodi, M.; Yan, W. Effect of Deposition Material and Heat Treatment on Wear and Rolling Contact Fatigue of Laser Cladded Rails. Wear 2018, 412–413, 69–81. [Google Scholar] [CrossRef]
- Datsyshyn, O.P.; Panasyuk, V.V.; Glazov, A.Y. Modeling of Fatigue Contact Damages Formation in Rolling Bodies and Assessment of Their Lifetime. Wear 2011, 271, 186–194. [Google Scholar] [CrossRef]
- Seo, J.; Kwon, S.; Lee, D. Effects of Surface Defects on Rolling Contact Fatigue of Rail. Procedia Eng. 2011, 10, 1274–1278. [Google Scholar] [CrossRef] [Green Version]
- Burdzik, R.; Konieczny, Ł.; Deuszkiewicz, P.; Vaskova, I. Application of Time-Frequency Method for Research on Influence of Locomotive Wheel Slip on Vibration. J. Vibroeng. 2018, 20, 2998–3008. [Google Scholar] [CrossRef] [Green Version]
- Dižo, J.; Blatnický, M.; Gerlici, J.; Leitner, B.; Melnik, R.; Semenov, S.; Mikhailov, E.; Kostrzewski, M. Evaluation of Ride Comfort in a Railway Passenger Car Depending on a Change of Suspension Parameters. Sensors 2021, 21, 8138. [Google Scholar] [CrossRef] [PubMed]
- Bureika, G.; Levinzon, M.; Dailydka, S.; Steisunas, S.; Zygiene, R. Evaluation Criteria of Wheel/Rail Interaction Measurement Results by Trackside Control Equipment. Int. J. Heavy Veh. Syst. 2019, 26, 747–764. [Google Scholar] [CrossRef]
- Celiński, I.; Burdzik, R.; Młyńczak, J.; Kłaczyński, M. Research on the Applicability of Vibration Signals for Real-Time Train and Track Condition Monitoring. Sensors 2022, 22, 2368. [Google Scholar] [CrossRef] [PubMed]
- Burdzik, R.; Słowiński, P.; Juzek, M.; Nowak, B.; Rozmus, J. Dependence of Damage to the Running Surface of the Railway Rail on the Vibroacoustic Signal of a Passing Passenger Train. Vibroeng. Procedia 2018, 19, 226–229. [Google Scholar] [CrossRef] [Green Version]
- Wallentin, M.; Bjarnehed, H.L.; Lundén, R. Cracks around Railway Wheel Flats Exposed to Rolling Contact Loads and Residual Stresses. Wear 2005, 258, 1319–1329. [Google Scholar] [CrossRef]
- Popp, K.; Kruse, H.; Kaiser, I. Vehicle-Track Dynamics in the Mid-Frequency Range. Veh. Syst. Dyn. 1999, 31, 423–464. [Google Scholar] [CrossRef]
- Steinfeld, A.; Fong, T.; Kaber, D.; Lewis, M.; Scholtz, J.; Schultz, A.; Goodrich, M. Common Metrics for Human-Robot Interaction. In Proceedings of the HRI 2006: Proceedings of the 2006 ACM Conference on Human-Robot Interaction, Salt Lake City, UT, USA, 2–3 March 2006; pp. 33–40. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Shi, L.B.; Guo, J.; Liu, Q.Y.; Wang, W.J. On the Wear and Damage Characteristics of Rail Material under Low Temperature Environment Condition. Wear 2018, 394–395, 149–158. [Google Scholar] [CrossRef]
- Fang, Z.; Lou, L.; Tang, K.; Wang, W.; Chen, B.; Wang, Y.; Zheng, Y. A CMOS-Integrated Radar-Assisted Cognitive Sensing Platform for Seamless Human-Robot Interactions. In Proceedings of the IEEE International Symposium on Circuits and Systems, Daegu, Republic of Korea, 22–28 May 2021. [Google Scholar] [CrossRef]
- Wang, W.J.; Liu, T.F.; Wang, H.Y.; Liu, Q.Y.; Zhu, M.H.; Jin, X.S. Influence of Friction Modifiers on Improving Adhesion and Surface Damage of Wheel/Rail under Low Adhesion Conditions. Tribol. Int. 2014, 75, 16–23. [Google Scholar] [CrossRef]
- Pieringer, A.; Kropp, W.; Nielsen, J.C.O. The Influence of Contact Modelling on Simulated Wheel/Rail Interaction Due to Wheel Flats. Wear 2014, 314, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.J.; Guo, H.M.; Du, X.; Guo, J.; Liu, Q.Y.; Zhu, M.H. Investigation on the Damage Mechanism and Prevention of Heavy-Haul Railway Rail. Eng. Fail. Anal. 2013, 35, 206–218. [Google Scholar] [CrossRef]
- Konowrocki, R.; Chojnacki, A. Analysis of Rail Vehicles’ Operational Reliability in the Aspect of Safety against Derailment Based on Various Methods of Determining the Assessment Criterion. Eksploat. I Niezawodn. 2020, 22, 73–85. [Google Scholar] [CrossRef]
- Huang, Y.B.; Shi, L.B.; Zhao, X.J.; Cai, Z.B.; Liu, Q.Y.; Wang, W.J. On the Formation and Damage Mechanism of Rolling Contact Fatigue Surface Cracks of Wheel/Rail under the Dry Condition. Wear 2018, 400–401, 62–73. [Google Scholar] [CrossRef]
- Regularities of Shaping of a Wheel Profile as a Result of Deterioration of the Rolling Surface in Exploitation-Transport Problems-Tom T. 3, z. 4 (2008)-BazTech-Yadda. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BSL7-0032-0017 (accessed on 9 March 2022).
- Shevtsov, I.Y.; Markine, V.L.; Esveld, C. Design of Railway Wheel Profile Taking into Account Rolling Contact Fatigue and Wear. Wear 2008, 265, 1273–1282. [Google Scholar] [CrossRef]
- Jin, X.; Xiao, X.; Wen, Z.; Guo, J.; Zhu, M. An Investigation into the Effect of Train Curving on Wear and Contact Stresses of Wheel and Rail. Tribol. Int. 2009, 42, 475–490. [Google Scholar] [CrossRef]
- Polach, O. Wheel Profile Design for Target Conicity and Wide Tread Wear Spreading. Wear 2011, 271, 195–202. [Google Scholar] [CrossRef]
- Vaičiūnas, G.; Bureika, G.; Steišūnas, S. Research on Metal Fatigue of Rail Vehicle Wheel Considering the Wear Intensity of Rolling Surface. Eksploat. I Niezawodn. 2018, 20, 24–29. [Google Scholar] [CrossRef]
- Turnia, J.; Sinclair, J.; Perez, J. A Review of Wheel Wear and Rolling Contact Fatigue. J. Rail Rapid Transit 2007, 221, 271–289. [Google Scholar] [CrossRef]
- Bodini, I.; Petrogalli, C.; Faccoli, M.; Lancini, M.; Pasinetti, S.; Sansoni, G.; Docchio, F.; Mazzù, A. Evaluation of Wear in Rolling Contact Tests by Means of 2D Image Analysis. Wear 2018, 400–401, 156–168. [Google Scholar] [CrossRef]
- Tamada, R.; Shiraishi, M. Prediction of Uneven Tire Wear Using Wear Progress Simulation. Tire Sci. Technol. 2017, 45, 87–100. [Google Scholar] [CrossRef]
- Favorskaya, A.; Khokhlov, N. Modeling the Impact of Wheelsets with Flat Spots on a Railway Track. Procedia Comput. Sci. 2018, 126, 1100–1109. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Niu, G.; Zuo, M. Offline and Online Measurement of the Geometries of Train Wheelsets: A Review. IEEE Trans. Instrum. Meas. 2022, 71, 3523915. [Google Scholar] [CrossRef]
- Wei, X.; Wei, D.; Suo, D.; Jia, L.; Li, Y. Multi-Target Defect Identification for Railway Track Line Based on Image Processing and Improved YOLOv3 Model. IEEE Access 2020, 8, 61973–61988. [Google Scholar] [CrossRef]
- Vaičiūnas, G.; Bureika, G.; Steišūnas, S. Rail Vehicle Axle-Box Bearing Damage Detection Considering the Intensity of Heating Alteration. Eksploat. I Niezawodn.–Maint. Reliab. 2020, 22, 724–729. [Google Scholar] [CrossRef]
- Qu, S.; Wang, J.; Zhang, D.; Li, D.; Wei, L. Failure Analysis on Bogie Frame with Fatigue Cracks Caused by Hunting Instability. Eng. Fail. Anal. 2021, 128, 105584. [Google Scholar] [CrossRef]
- Matsumoto, A.; Sato, Y.; Ohno, H.; Tomeoka, M.; Matsumoto, K.; Ogino, T.; Tanimoto, M.; Oka, Y.; Okano, M. Improvement of Bogie Curving Performance by Using Friction Modifier to Rail/Wheel Interface: Verification by Full-Scale Rolling Stand Test. Wear 2005, 258, 1201–1208. [Google Scholar] [CrossRef]
- Larsen, R.D. Box-and-Whisker Plots. J. Chem. Educ. 1985, 62, 302–305. [Google Scholar] [CrossRef]
Speed, km/h | The First Iteration of Force Testing | The Second Iteration of Force Testing | ||||||
---|---|---|---|---|---|---|---|---|
Max Forces | Mean Forces | Max Forces | Mean Forces | |||||
Loaded Wagon | Unloaded Wagon | Loaded Wagon | Unloaded Wagon | Loaded Wagon | Unloaded Wagon | Loaded Wagon | Unloaded Wagon | |
30 | 0.045 | 0.244 | 0.040 | 0.034 | 0.110 | 0.207 | 0.021 | 0.043 |
40 | 0.192 | 0.166 | 0.030 | 0.100 | 0.376 | 0.117 | 0.063 | 0.040 |
50 | 0.122 | 0.124 | 0.043 | 0.172 | 0.629 | 0.217 | 0.080 | 0.035 |
60 | 0.224 | 00.13 | 0.026 | 0.126 | 0.411 | 0.124 | 0.041 | 0.016 |
70 | 0.147 | 0.362 | 0.101 | 0.114 | 0.432 | 0.156 | 0.087 | 0.048 |
80 | 0.109 | 0.118 | 0.108 | 0.110 | 0.606 | 0.132 | 0.110 | 0.176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaičiūnas, G.; Bureika, G.; Steišūnas, S. Measurement Repeatability of Rail Wheel Loads Caused by Rolling Surface Damages. Appl. Sci. 2023, 13, 4474. https://doi.org/10.3390/app13074474
Vaičiūnas G, Bureika G, Steišūnas S. Measurement Repeatability of Rail Wheel Loads Caused by Rolling Surface Damages. Applied Sciences. 2023; 13(7):4474. https://doi.org/10.3390/app13074474
Chicago/Turabian StyleVaičiūnas, Gediminas, Gintautas Bureika, and Stasys Steišūnas. 2023. "Measurement Repeatability of Rail Wheel Loads Caused by Rolling Surface Damages" Applied Sciences 13, no. 7: 4474. https://doi.org/10.3390/app13074474
APA StyleVaičiūnas, G., Bureika, G., & Steišūnas, S. (2023). Measurement Repeatability of Rail Wheel Loads Caused by Rolling Surface Damages. Applied Sciences, 13(7), 4474. https://doi.org/10.3390/app13074474