Modeling and Analysis of Contactless Solar Evaporation for Scalable Application
<p>Schematic of the SCE. The red region in bulk water represents the penetration depth of infrared thermal radiation (~10 μm).</p> "> Figure 2
<p>Schematic diagrams of (<b>a</b>) the laboratory SCE device, (<b>b</b>) the scalable SCE device and (<b>c</b>) the detailed layout of absorber–emitter of both devices.</p> "> Figure 3
<p>Independence study of mesh for scalable SCE.</p> "> Figure 4
<p>Schematic diagram of the test rig for laboratory SCE.</p> "> Figure 5
<p>Temperatures from experiment and simulation results.</p> "> Figure 6
<p>Comparison between laboratory and scalable SCE. (<b>a</b>) Evaporation rates of SCE under different hole area ratios (0.7%, 14.4% and 36.9%). (<b>b</b>) Heat-balance analysis and key temperatures comparison of two SCE processes under a hole area ratio of 14.4%.</p> "> Figure 7
<p>Mechanism diagram of the downward heat transfer and the vapor diffusion for SCE.</p> "> Figure 8
<p><span class="html-italic">T</span><sub>ae</sub>, <span class="html-italic">T</span><sub>wat-t</sub> and evaporation rate under different hole area ratios, with the same hole diameter (<span class="html-italic">d</span> = 1.1 mm) and air layer thickness (<span class="html-italic">δ</span> = 2.0 mm).</p> "> Figure 9
<p><span class="html-italic">T</span><sub>ae</sub>, <span class="html-italic">T</span><sub>wat-t</sub> and evaporation rate under different hole diameters, with the same hole area ratio (<span class="html-italic">φ</span> = 20%) and air layer thickness (<span class="html-italic">δ</span> = 2.0 mm).</p> "> Figure 10
<p>(<b>a</b>) <span class="html-italic">T</span><sub>ae</sub>, <span class="html-italic">T</span><sub>wat-t</sub> and evaporation rate under different air layer thickness, with the same hole diameter (<span class="html-italic">d</span> = 1.1 mm) and hole area ratio (<span class="html-italic">φ</span> = 14%). (<b>b</b>) The temperature difference between the water surface and infrared emitter surface and the proportion of heat flow under different air layer thickness.</p> "> Figure 11
<p>Energy flows distribution of absorber–emitter and water surface during heat energy transfer from the top to bottom under the condition that the thickness of air layer is 2 mm, the hole diameter is 1.1 mm, and the hole area ratio is 14%.</p> "> Figure 12
<p>Potential of foam insulation to reduce conduction heat loss. (<b>a</b>) The structure of scalable SCE adding foam insulation and the cross-sectional temperature distribution of the absorber–emitter, vapor diffusion hole, air layer and 5 mm thick water layer under different insulation layer thicknesses of 0 mm, 10 mm, 35 mm and 45 mm. (<b>b</b>) The variation trends of energy distribution ratio and evaporation rate under different insulation layer thicknesses.</p> "> Figure 13
<p>Potential of a convection cover to reduce convection heat loss. (<b>a</b>) The structure of scalable SCE adding convection cover and the cross-sectional temperature distribution of the absorber–emitter, vapor diffusion hole and air layer under different convection cover thicknesses of 0 mm, 2 mm, 4 mm and 6 mm. (<b>b</b>) The energy flow distribution and evaporation rate under different convection cover thicknesses.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Working Principle
2.2. Modelling Framework
- (1)
- The moist air is in saturated state (RH = 100%) on the water surface;
- (2)
- In the scalable model, the view factor is set to 1 between the infrared emitter surface and the water surface;
- (3)
- Both in laboratory and scalable models, the bulk water is set as solid domain.
2.3. Experimental Setup
3. Result and Discussion
3.1. Modelling Validation
3.2. Comparison between the Laboratory and Scalable SCE
3.3. Parametric Analysis of the Scalable SCE
3.3.1. Hole Area Ratio
3.3.2. Hole Diameter
3.3.3. Air Layer Thickness
3.4. Heat Loss Suppression for Scalable SCE
3.4.1. Energy Flow Analysis
3.4.2. Heat Loss Suppression on the Water Side
3.4.3. Heat Loss Suppression on the Air Side
4. Conclusions
- (1)
- Scalable SCE could obtain a higher evaporation rate (0.313 kg·m−2·h−1) than the laboratory SCE (0.139 kg·m−2·h−1), due to suppressed heat losses from the sidewalls;
- (2)
- Optimization of the hole parameter could increase the evaporation rate of scalable SCE up to 0.463 kg·m−2·h−1, by tuning the competition between solar absorption and vapor diffusion;
- (3)
- The evaporation rate of scalable SCE could be further increased to 0.797 kg·m−2·h−1, through the heat loss suppression both in water side and air side.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | |||
Q | energy flux, W | k | thermal conductivity, W·m−1·K−1 |
A | depth, mm | T | temperature, K |
B | width, mm | I | identity matrix vector, -- |
C | height, mm | K | the shear tensor vector, -- |
ρ | density, kg·m−3 | F | volume force vector, -- |
Cp | heat capacity, J·kg−1·K−1 | M | molar mass, kg mol−1 |
u | velocity vector, -- | c | concentration, mol m−3 |
G | moisture source, kg m−3 s−1 | g | diffusion flux of vapor, -- |
D | diffusion coefficient, m2 s−1 | coefficient of thermal expansion, K−1 | |
φ | relative humidity, % | viscous stress tensor, -- | |
F | view factor, 1 | ε | emissivity, % |
absorptivity, % | φ | hole area ratio, -- | |
σ | Stefan-Boltzmann constant, 5.67 × 10−8 W m−2 K−4 | d | hole diameter, mm |
hfg | latent heat of vaporization, kJ kg−1 | M | mesh, -- |
δ | air layer thickness, mm | m | mass flux, kg m−2 h−1 |
q | conductive heat flux vector, -- | ||
Subscripts | |||
V | vapor | cond | conduction |
L | loss | sat | saturation |
rad | radiation | evap | evaporation |
wat | water | t | top |
e | emitter | a | absorber |
amb | ambient | b | bottom |
h | heat | p | constant pressure condition |
Abbreviation | |||
SCE | solar-driven contactless evaporation | ZLD | zero-liquid discharge |
RH | relative humidity | DAQ | data acquisition |
References
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mclennan, M. INSIGHT REPORT in Partnership with the Global Risks Report 2021, 16th ed.; World Economic Forum: Cologny, Switzerland, 2021. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561, Erratum in Nature 2010, 468, 334–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demir, M.E.; Dincer, I. An integrated solar energy, wastewater treatment and desalination plant for hydrogen and freshwater production. Energy Convers. Manag. 2022, 267. [Google Scholar] [CrossRef]
- Weifeng, H.; Yu, L.; Haohao, A.; Xuan, Z.; Pengfei, S.; Dong, H. Parametric analysis of humidification dehumidification desalination driven by photovoltaic/thermal (PV/T) system. Energy Convers. Manag. 2022, 259, 115520. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Bhatia, B.; Li, B.; Zhao, L.; Wang, E.N. Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills. Appl. Energy 2020, 266, 114864. [Google Scholar] [CrossRef]
- Tong, T.; Elimelech, M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environ. Sci. Technol. 2016, 50, 6846–6855. [Google Scholar] [CrossRef]
- Lee, S.; Boo, C.; Elimelech, M.; Hong, S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membr. Sci. 2010, 365, 34–39. [Google Scholar] [CrossRef]
- Pinto, F.S.; Marques, R.C. Desalination projects economic feasibility: A standardization of cost determinants. Renew. Sustain. Energy Rev. 2017, 78, 904–915. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and sustainability—An appraisal and current perspective. Water Res. 2016, 89, 87–106. [Google Scholar] [CrossRef]
- Mohamed, A.; Maraqa, M.; Al Handhaly, J. Impact of land disposal of reject brine from desalination plants on soil and groundwater. Desalination 2005, 182, 411–433. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Shu, L.; Jegatheesan, V. A review of the management and treatment of brine solutions. Environ. Sci. Water Res. Technol. 2017, 3, 625–658. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Li, R.; Zhuo, S.; Jin, Y.; Shi, L.; Hong, S.; Chang, J.; Ong, C.S.; Wang, P. Solar Evaporator with Controlled Salt Precipitation for Zero Liquid Discharge Desalination. Environ. Sci. Technol. 2018, 52, 11822–11830. [Google Scholar] [CrossRef] [PubMed]
- Mickley, M. Survey of High-Recovery and Zero Liquid Discharge Technologies for Water Utilities; WaterReuse Found: Alexandria, VA, USA, 2008.
- Bostjancic, J.; Ludlum, R. Getting to Zero Discharge: How to Recycle That Last Bit of Really Bad Wastewater A Brief History of Evaporation. Proc. Int. Water Conf. 1996, 57, 290–295. [Google Scholar]
- Kashyap, V.; Al-Bayati, A.; Sajadi, S.M.; Irajizad, P.; Wang, S.H.; Ghasemi, H. A flexible anti-clogging graphite film for scalable solar desalination by heat localization. J. Mater. Chem. 2017, 5, 15227–15234. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Yuan, S.; Kang, Y.; Jian, M.; Hou, Q.; Gao, L.; Wang, H.; Zhang, X. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine. J. Mater. Chem. 2020, 8, 16212–16217. [Google Scholar] [CrossRef]
- Kuang, Y.; Chen, C.; He, S.; Hitz, E.M.; Wang, Y.; Gan, W.; Mi, R.; Hu, L. A High-Performance Self-Regenerating Solar Evaporator for Continuous Water Desalination. Adv. Mater. 2019, 31, e1900498. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, Y.; Shi, L.; Li, H.; Li, R.; Hong, S.; Zhuo, S.; Zhang, T.; Wang, P. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 2021, 12, 998. [Google Scholar] [CrossRef]
- Wang, W.; Aleid, S.; Shi, Y.; Zhang, C.; Li, R.; Wu, M.; Zhuo, S.; Wang, P. Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge. Joule 2021, 5, 1873–1887. [Google Scholar] [CrossRef]
- Ni, G.; Zandavi, S.H.; Javid, S.M.; Boriskina, S.V.; Cooper, T.A.; Chen, G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 2018, 11, 1510–1519. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Y.; Zhang, C.; Hong, S.; Shi, L.; Chang, J.; Li, R.; Jin, Y.; Ong, C.; Zhuo, S.; et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 2019, 10, 3012. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, L.; Zhao, L.; Li, B.; Bhatia, B.; Wang, C.; Wilke, K.L.; Song, Y.; Labban, O.; Lienhard, J.H.; et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 2020, 13, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Horseman, T.; Straub, A.P.; Yip, N.Y.; Li, D.; Elimelech, M.; Lin, S. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 2019, 5, eaax0763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiavazzo, E.; Morciano, M.; Viglino, F.; Fasano, M.; Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 2018, 1, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Gu, R.; Yu, Z.; Sun, Y.; Xie, P.; Li, Y.; Cheng, S. Enhancing stability of interfacial solar evaporator in high-salinity solutions by managing salt precipitation with Janus-based directional salt transfer structure. Desalination 2021, 524, 115470. [Google Scholar] [CrossRef]
- Fan, Y.; Tian, Z.; Wang, F.; He, J.; Ye, X.; Zhu, Z.; Sun, H.; Liang, W.; Li, A. Enhanced Solar-to-Heat Efficiency of Photothermal Materials Containing an Additional Light-Reflection Layer for Solar-Driven Interfacial Water Evaporation. ACS Appl. Energy Mater. 2021, 4, 2932–2943. [Google Scholar] [CrossRef]
- Yu, Z.; Gu, R.; Tian, Y.; Xie, P.; Jin, B.; Cheng, S. Enhanced Interfacial Solar Evaporation through Formation of Micro-Meniscuses and Microdroplets to Reduce Evaporation Enthalpy. Adv. Funct. Mater. 2022, 32. [Google Scholar] [CrossRef]
- Thakur, A.K.; Sathyamurthy, R.; Velraj, R.; Lynch, I. Development of a novel cellulose foam augmented with candle-soot derived carbon nanoparticles for solar-powered desalination of brackish water. Environ. Sci. Nano 2022, 9, 1247–1270. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.; Xiao, X.; Wang, H.; Yan, L.; Shi, Z.; Chen, Y.; Xu, W.; Wang, X. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. J. Mater. Chem. 2019, 7, 14620–14628. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, R.; Chen, Y.; Xiao, X.; Zhao, G.; Yang, H.; Li, J.; Xu, W.; Wang, X. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion. Appl. Energy 2020, 276, 115545. [Google Scholar] [CrossRef]
- Xu, W.; Hu, X.; Zhuang, S.; Wang, Y.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J. Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Liu, G.; Chen, T.; Xu, J.; Yao, G.; Xie, J.; Cheng, Y.; Miao, Z.; Wang, K. Salt-Rejecting Solar Interfacial Evaporation. Cell Rep. Phys. Sci. 2021, 2, 100310. [Google Scholar] [CrossRef]
- Nawaz, F.; Yang, Y.; Zhao, S.; Sheng, M.; Pan, C.; Que, W. Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J. Mater. Chem. 2021, 9, 16233–16254. [Google Scholar] [CrossRef]
- Cooper, T.A.; Zandavi, S.H.; Ni, G.W.; Tsurimaki, Y.; Huang, Y.; Boriskina, S.V.; Chen, G. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertie, J.E.; Lan, Z. Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C between 15,000 and 1 cm−1. Appl. Spectrosc. 1996, 50, 1047–1057. [Google Scholar] [CrossRef]
- Menon, A.K.; Haechler, I.; Kaur, S.; Lubner, S.; Prasher, R.S. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nat. Sustain. 2020, 3, 144–151. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Zhao, L.; Bhatia, B.; Zhong, Y.; Gong, S.; Wang, E.N. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 2021, 14, 1771–1793. [Google Scholar] [CrossRef]
Parts | Dimension | |
---|---|---|
Laboratory Device | Scalable Device | |
Absorber–emitter [A × B × C] | 35 mm × 35 mm × 1.5 mm | 11.67 mm × 11.67 mm × 1.5 mm |
Bulk water [A × B × C] | 35 mm × 35 mm × 50 mm | 11.67 mm × 11.67 mm × 50 mm |
Container side wall thickness | 20 mm | None |
Container bottom wall thickness | 20 mm | 20 mm |
Air gap thickness | 2 mm | 2 mm |
Number of straight holes | 9 | 1 |
Thickness of the insulation foam | 3.5 mm | None |
Parameter | Value | Parameter | Value |
---|---|---|---|
Twat (°C) | 25 | (%) | 96.32 |
Tae (°C) | 25 | (%) | 78.20 |
Tamb (°C) | 25 | (%) | 95 |
(%) | 50 | hfg (kJ kg−1) | 2500 − 2.386 × (T-273) |
(%) | 100 | D (m2 s−1) | 1.87 × 10−10 (T/K)2.072/(P/atm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Yu, J.; Xu, Z. Modeling and Analysis of Contactless Solar Evaporation for Scalable Application. Appl. Sci. 2023, 13, 4052. https://doi.org/10.3390/app13064052
Zheng S, Yu J, Xu Z. Modeling and Analysis of Contactless Solar Evaporation for Scalable Application. Applied Sciences. 2023; 13(6):4052. https://doi.org/10.3390/app13064052
Chicago/Turabian StyleZheng, Siyang, Jie Yu, and Zhenyuan Xu. 2023. "Modeling and Analysis of Contactless Solar Evaporation for Scalable Application" Applied Sciences 13, no. 6: 4052. https://doi.org/10.3390/app13064052
APA StyleZheng, S., Yu, J., & Xu, Z. (2023). Modeling and Analysis of Contactless Solar Evaporation for Scalable Application. Applied Sciences, 13(6), 4052. https://doi.org/10.3390/app13064052