Error Similarity Analysis and Error Compensation of Industrial Robots with Uncertainties of TCP Calibration
<p>Working scenarios of existing robotic drilling systems. (<b>a</b>) NUAA robotic drilling system (<b>b</b>) NUAA dual-robot cooperative drilling and riveting system.</p> "> Figure 2
<p>DH model of KUKA KR500-2830.</p> "> Figure 3
<p>Error similarity analysis without TCP calibration error. (<b>a</b>) Similarity in the x-axis; (<b>b</b>) similarity in the y-axis; (<b>c</b>) similarity in the z-axis.</p> "> Figure 4
<p>Error similarity analysis with TCP calibration error within ±1 mm. (<b>a</b>) Similarity in the x-axis; (<b>b</b>) similarity in the y-axis; (<b>c</b>) similarity in the z-axis.</p> "> Figure 5
<p>Error similarity analysis with TCP calibration error within ±5 mm (<b>a</b>) Similarity in the x-axis; (<b>b</b>) similarity in the y-axis; (<b>c</b>) similarity in the z-axis.</p> "> Figure 6
<p>Regionalized error similarity compensation method.</p> "> Figure 7
<p>Robot error compensation process.</p> "> Figure 8
<p>Experimental setup of the robotic drilling system.</p> "> Figure 9
<p>Robotic drilling task. (<b>a</b>) Region division of robotic drilling task; (<b>b</b>) Sampling area division of robotic drilling task.</p> "> Figure 10
<p>Experimental results of robot compensation. (<b>a</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>1</mn> </msub> </mrow> </semantics></math> (<b>b</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>c</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>3</mn> </msub> </mrow> </semantics></math>; (<b>d</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>4</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 10 Cont.
<p>Experimental results of robot compensation. (<b>a</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>1</mn> </msub> </mrow> </semantics></math> (<b>b</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>2</mn> </msub> </mrow> </semantics></math>; (<b>c</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>3</mn> </msub> </mrow> </semantics></math>; (<b>d</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>4</mn> </msub> </mrow> </semantics></math>.</p> "> Figure 11
<p>Spatial correlation analysis of residual error. (<b>a</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>1</mn> </msub> </mrow> </semantics></math> vs. distance; (<b>b</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>1</mn> </msub> </mrow> </semantics></math> vs. angle deviation; (<b>c</b>) Positioning error of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="italic">Ω</mi> <mn>2</mn> </msub> </mrow> </semantics></math> vs. distance and angle deviation.</p> ">
Abstract
:1. Introduction
- (1)
- The influence of TCP calibration uncertainties on the Cartesian positioning error similarity is analyzed compared with Ref. [29], which only considered joint errors;
- (2)
- Considering the uncertainties of TCP calibration, a robot compensation method based on regionalized error similarity is proposed, which broadens the application limits of robot compensation technology;
- (3)
- The proposed method is applied successfully to the robotic drilling, which effectively reduces the positioning error under the large variation of the TCP, and the accuracy is improved from 0.96 mm with the method in Ref. [28] to 0.23 mm.
2. Methods
2.1. Error Similarity Analysis with TCP Calibration Uncertainties
2.2. Regionalized Calibration of TCP
2.3. Regionalized Error Similarity Compensation Method
3. Experimental Studies
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, W.; Wang, L. Industrial robotic machining: A review. Int. J. Adv. Manuf. Technol. 2019, 103, 1239–1255. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Dong, F. Robot machining: Recent development and future research issues. Int. J. Adv. Manuf. Technol. 2013, 66, 1489–1497. [Google Scholar] [CrossRef] [Green Version]
- Saund, B.; DeVlieg, R. High Accuracy Articulated Robots with CNC Control Systems. SAE Int. J. Aerosp. 2013, 6, 780–784. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Qu, W.; Cao, L.; Yang, D.; Ke, Y. An off-line programming system for robotic drilling in aerospace manufacturing. Int. J. Adv. Manuf. Technol. 2013, 68, 2535–2545. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Wei, X.; Zhu, D. Spatial Path Planning for Robotic Milling of Automotive Casting Components Based on Optimal Machining Posture. Metals 2022, 12, 1271. [Google Scholar] [CrossRef]
- Yang, B.; Guo, K.; Sun, J. Chatter Detection in Robotic Milling Using Entropy Features. Appl. Sci. 2022, 12, 8276. [Google Scholar] [CrossRef]
- Möller, C.; Schmidt, H.C.; Koch, P.; Böhlmann, C.; Kothe, S.-M.; Wollnack, J.; Hintze, W. Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry. Procedia Manuf. 2017, 14, 17–29. [Google Scholar] [CrossRef]
- Schneider, U.; Drust, M.; Ansaloni, M.; Lehmann, C.; Pellicciari, M.; Leali, F.; Gunnink, J.W.; Verl, A. Improving robotic machining accuracy through experimental error investigation and modular compensation. Int. J. Adv. Manuf. Technol. 2014, 85, 3–15. [Google Scholar] [CrossRef]
- DeVlieg, R.; Szallay, T. Improved Accuracy of Unguided Articulated Robots. SAE Int. J. Aerosp. 2009, 2, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, R.; Keogh, P. Real-Time Laser Tracker Compensation of Robotic Drilling and Machining. J. Manuf. Mater. Process. 2020, 4, 79. [Google Scholar] [CrossRef]
- Schneider, U.; Posada, J.D.; Drust, M.; Verl, A. Position Control of an Industrial Robot Using an Optical Measurement Sys-tem for Machining Purposes. In Proceedings of the International Conference on Manufacturing Research (ICMR), Cranfield Bedfordshire, UK, 19–20 September 2013; 2013; pp. 307–312. [Google Scholar]
- Gharaaty, S.; Shu, T.; Joubair, A.; Xie, W.F.; Bonev, I.A. Online pose correction of an industrial robot using an optical coordinate measure machine system. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418787915. [Google Scholar] [CrossRef] [Green Version]
- Rocadas, P.S.; McMaster, R.S. A Robot Cell Calibration Algorithm and Its Use with a 3D Measuring System. In Proceedings of the ISIE ’97 Proceeding of the IEEE International Symposium on Industrial Electronics, Guimaraes, Portugal, 7–11 July 1997; 1, pp. SS297–SS302. [Google Scholar]
- Gaudreault, M.; Joubair, A.; Bonev, I.A. Local and closed-loop calibration of an industrial serial robot using a new low-cost 3D measuring device. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4312–4319. [Google Scholar] [CrossRef]
- Ikits, M.; Hollerbach, J.M. Kinematic Calibration Using a Plane Constraint. In Proceedings of the International Conference on Robotics and Automation, Albuquerque, NM, USA, 25 April 1997; Volume 4, pp. 3191–3196.
- Wu, Y.; Klimchik, A.; Caro, S.; Furet, B.; Pashkevich, A. Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments. Robot. Comput. Integr. Manuf. 2015, 35, 151–168. [Google Scholar] [CrossRef] [Green Version]
- Zhenhua, W.; Hui, X.; Guodong, C.; Rongchuan, S.; Sun, L. A distance error based industrial robot kinematic calibration method. Ind. Robot. Int. J. Robot. Res. Appl. 2014, 41, 439–446. [Google Scholar] [CrossRef]
- Le, P.-N.; Kang, H.-J. A New Manipulator Calibration Method for the Identification of Kinematic and Compliance Errors Using Optimal Pose Selection. Appl. Sci. 2022, 12, 5422. [Google Scholar] [CrossRef]
- Li, G.; Zhang, F.; Fu, Y.; Wang, S. Joint Stiffness Identification and Deformation Compensation of Serial Robots Based on Dual Quaternion Algebra. Appl. Sci. 2019, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Kong, L.; Dong, G. Modeling and Compensation of Motion Errors for 6-DOF Robotic Manipulators. Appl. Sci. 2021, 11, 10100. [Google Scholar] [CrossRef]
- Heisel, U.; Richter, F.; Wurst, K.-H. Thermal Behaviour of Industrial Robots and Possibilities for Error Compensation. CIRP Ann. 1997, 46, 283–286. [Google Scholar] [CrossRef]
- Vocetka, M.; Bobovský, Z.; Babjak, J.; Suder, J.; Grushko, S.; Mlotek, J.; Krys, V.; Hagara, M. Influence of Drift on Robot Repeatability and Its Compensation. Appl. Sci. 2021, 11, 10813. [Google Scholar] [CrossRef]
- Tian, W.; Zeng, Y.; Zhou, W.; Liao, W. Calibration of robotic drilling systems with a moving rail. Chin. J. Aeronaut. 2014, 27, 1598–1604. [Google Scholar] [CrossRef] [Green Version]
- Alici, G.; Shirinzadeh, B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mech. Mach. Theory 2005, 40, 879–906. [Google Scholar] [CrossRef]
- Li, B.; Tian, W.; Zhang, C.; Hua, F.; Cui, G.; Li, Y. Positioning error compensation of an industrial robot using neural networks and experimental study. Chin. J. Aeronaut. 2022, 35, 346–360. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, P.; Ma, G.; Xiao, W. System identification of the nonlinear residual errors of an industrial robot using massive measurements. Robot. Comput. Manuf. 2019, 59, 104–114. [Google Scholar] [CrossRef]
- Wang, W.; Tian, W.; Liao, W.; Li, B.; Hu, J. Error compensation of industrial robot based on deep belief network and error similarity. Robot. Comput. Manuf. 2022, 73, 102220. [Google Scholar] [CrossRef]
- Zeng, Y.; Tian, W.; Li, D.; He, X.; Liao, W. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system. Int. J. Adv. Manuf. Technol. 2017, 88, 2745–2755. [Google Scholar] [CrossRef]
- Zeng, Y.; Tian, W.; Liao, W. Positional error similarity analysis for error compensation of industrial robots. Robot. Comput. Integr. Manuf. 2016, 42, 113–120. [Google Scholar] [CrossRef]
- Cao, S.; Cheng, Q.; Guo, Y.; Zhu, W.; Wang, H.; Ke, Y. Pose error compensation based on joint space division for 6-DOF robot manipulators. Precis. Eng. 2022, 74, 195–204. [Google Scholar] [CrossRef]
- Denavit, J.; Hartenberg, R.S. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. J. Appl. Mech. 1955, 22, 215–221. [Google Scholar] [CrossRef]
Joint Frame | θ (°) | a (mm) | d (mm) | α (°) |
---|---|---|---|---|
{B} | 0 | 0 | 0 | 0 |
{O1X1Y1Z1} | θ1 | 500.5065 | 1045 | −90 |
{O2X2Y2Z2} | θ2 | −1300.4225 | 0 | 0 |
{O3X3Y3Z3} | θ3 | 54.39 | 0 | −90 |
{O4X4Y4Z4} | θ4 | 0 | −1025.1913 | 90 |
{O5X5Y5Z5} | θ5 | 0 | 0 | −90 |
{O6X6Y6Z6} | θ6 | 0 | 0 | 180 |
Region | Ω0 | Ω1 | Ω2 | Ω3 | Ω4 |
---|---|---|---|---|---|
453.31 | 452.23 | 452.03 | 451.24 | 450.50 | |
5.21 | −4.71 | −3.68 | −3.32 | −3.52 | |
384 | 383.80 | 383.53 | 386.91 | 387.70 | |
−140.18 | −77.64 | −57.3 | 87.55 | 128.34 | |
−89.99 | −89.91 | −89.93 | −89.86 | −89.85 | |
140.56 | 76.9224 | 56.73 | −87.91 | −128.74 |
Error (mm) | Ω0 | Ω1 | Ω2 | Ω3 | Ω4 |
---|---|---|---|---|---|
Ω0 | 9.98 | 8.99 | 9.25 | 9.89 | |
Ω1 | 9.98 | 1.08 | 3.55 | 4.43 | |
Ω2 | 8.99 | 1.08 | 3.49 | 4.44 | |
Ω3 | 9.25 | 3.55 | 3.49 | 1.1 | |
Ω4 | 9.89 | 4.43 | 4.44 | 1.1 |
Methods | (mm) | (mm) | ||
---|---|---|---|---|
Uncompensated | [9.2737, 10.6342] | [9.4061, 10.3392] | [3.4253, 5.6238] | [4.455, 7.997] |
Method in Ref. [28] | [0.0723, 0.9507] | [0.1288, 0.8524] | [0.1216, 0.5048] | [0.1194, 0.9593] |
Proposed method with corresponding | [0.0623, 0.2099] | [0.011, 0.2348] | [0.0058, 0.1952] | [0.031, 0.2178] |
Proposed method with of the adjacent region | [0.2114, 0.7061] | [0.0542, 0.5798] | [0.0162, 0.3565] | [0.0602, 0.6618] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, B.; Zhao, X.; Cheng, S.; Zhang, W.; Tian, W. Error Similarity Analysis and Error Compensation of Industrial Robots with Uncertainties of TCP Calibration. Appl. Sci. 2023, 13, 2722. https://doi.org/10.3390/app13042722
Li Y, Li B, Zhao X, Cheng S, Zhang W, Tian W. Error Similarity Analysis and Error Compensation of Industrial Robots with Uncertainties of TCP Calibration. Applied Sciences. 2023; 13(4):2722. https://doi.org/10.3390/app13042722
Chicago/Turabian StyleLi, Yufei, Bo Li, Xidong Zhao, Simiao Cheng, Wei Zhang, and Wei Tian. 2023. "Error Similarity Analysis and Error Compensation of Industrial Robots with Uncertainties of TCP Calibration" Applied Sciences 13, no. 4: 2722. https://doi.org/10.3390/app13042722
APA StyleLi, Y., Li, B., Zhao, X., Cheng, S., Zhang, W., & Tian, W. (2023). Error Similarity Analysis and Error Compensation of Industrial Robots with Uncertainties of TCP Calibration. Applied Sciences, 13(4), 2722. https://doi.org/10.3390/app13042722