Omni Wheel Arrangement Evaluation Method Using Velocity Moments
<p>Practical omnidirectional robot. (<b>a</b>) “AiTran” developed by DAIHEN Corporation, can be used not only for loading but also for towing cage carts and substituting for forks and can be widely applied to various objects and scenes in factories <math display="inline"><semantics> <msup> <mrow/> <mn>1</mn> </msup> </semantics></math>. (<b>b</b>) Robot under development by Sony Corporation and Shimizu Corporation to improve the efficiency of construction management tasks such as patrolling and monitoring at construction sites <math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>. (<b>c</b>) “Display Robot” developed by THK Corporation and Yoshityu Mannequin Corporation for customer service and advertising activities in commercial facilities, hotels, and airports <math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math>. (<math display="inline"><semantics> <msup> <mrow/> <mn>1</mn> </msup> </semantics></math> <a href="https://www.youtube.com/watch?v=IPszY3uGrt8" target="_blank">https://www.youtube.com/watch?v=IPszY3uGrt8</a>, accessed on 19 January 2023. <math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> <a href="https://www.sony.com/ja/SonyInfo/News/Press/202112/21-1214/" target="_blank">https://www.sony.com/ja/SonyInfo/News/Press/202112/21-1214/</a>, accessed on 19 January 2023. <math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math> <a href="https://products.thk.com/jp/ja/news/products/article-01102020-1.html" target="_blank">https://products.thk.com/jp/ja/news/products/article-01102020-1.html</a>, accessed on 19 January 2023).</p> "> Figure 2
<p>The example of omnidirectional wheels. (<math display="inline"><semantics> <msup> <mrow/> <mn>1</mn> </msup> </semantics></math> <a href="https://www.nexusrobot.com/product/4-inch100mm-double-aluminum-omni-wheel-bearing-rollers-14054.html" target="_blank">https://www.nexusrobot.com/product/4-inch100mm-double-aluminum-omni-wheel-bearing-rollers-14054.html</a>, accessed on 18 January 2023. <math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> <a href="https://www.nexusrobot.com/product/4-inch-100mm-mecanum-wheel-rightbearing-rollers-14094r.html" target="_blank">https://www.nexusrobot.com/product/4-inch-100mm-mecanum-wheel-rightbearing-rollers-14094r.html</a>, accessed on 18 January 2023).</p> "> Figure 3
<p>Pattern diagram of the Omni wheel robot: The parameters of each wheel of an Omni wheel robot are shown when a wheel of radius <span class="html-italic">r</span> is placed at position (<span class="html-italic">x</span>,<span class="html-italic">y</span>) and direction <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. <math display="inline"><semantics> <mi>ω</mi> </semantics></math> and <span class="html-italic">V</span> are the rotational and ground speeds of the wheel, and <math display="inline"><semantics> <msup> <mi>l</mi> <msup> <mrow/> <mo>′</mo> </msup> </msup> </semantics></math> are the distance to the center of rotation of the robot relative to the velocity vector of each wheel.</p> "> Figure 4
<p>Appearance of the robot.</p> "> Figure 5
<p>Appearance of the robot’s parts: (<b>a</b>) shows the board that serves as the foundation. (<b>b</b>) shows the plate to hold the motor.</p> "> Figure 6
<p>The robot hardware configuration.</p> "> Figure 7
<p>The robot trajectory during each travel direction with 4-wheeled Omni wheel robots.</p> "> Figure 7 Cont.
<p>The robot trajectory during each travel direction with 4-wheeled Omni wheel robots.</p> "> Figure 8
<p>The robot trajectory during each travel direction with 6-wheeled Omni wheel robots.</p> "> Figure 9
<p>The robot’s actual angular speeds during each travel direction and command speed with 4-wheeled Omni wheel robots.</p> "> Figure 9 Cont.
<p>The robot’s actual angular speeds during each travel direction and command speed with 4-wheeled Omni wheel robots.</p> "> Figure 10
<p>The robot’s actual angular speeds during each travel direction and command speed with 6-wheeled Omni wheel robots.</p> "> Figure 11
<p>The relationship between the sum of the velocity moments generated by the command velocity and the angular velocity.</p> "> Figure 11 Cont.
<p>The relationship between the sum of the velocity moments generated by the command velocity and the angular velocity.</p> ">
Abstract
:1. Introduction
- We discuss the relationship between the velocity moment generated during robot movement and robot turning.
- By considering the balance of the velocity moment, we show that complete omnidirectional movement can be achieved even with an asymmetric wheel arrangement.
- We show that a robot can go straight in at least one direction for any wheel arrangement, and, thus, the robot can be controlled even if an actuator is broken.
2. Related Work
3. Omni Wheel Arrangement Evaluation Method Using Velocity Moments
3.1. Equation of Balance for Velocity Moments
3.2. Derivation of “Easy-to-Operate Omni Wheel Arrangement”
3.3. Estimation of Straight-Line Direction
4. Verification
4.1. Hardware Configuration
4.2. Experimental Evaluation
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SBC | Single Board Computer |
AR | Augmented Reality |
ROS | Robot Operating System |
E-to-O | Easy-to-Operate |
RMS | Root-Mean-Square |
References
- Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839596. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.W.; Chen, J.; Chai, P.R.; Ehmke, C.; Rupp, P.; Dadabhoy, F.Z.; Feng, A.; Li, C.; Thomas, A.J.; da Silva, M.; et al. Mobile Robotic Platform for Contactless Vital Sign Monitoring. Cyborg Bionic Syst. 2022, 2022, 9780497. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meng, L.; Kang, R.; Liu, B.; Gu, S.; Zhang, Z.; Meng, F.; Ming, A. Design and Dynamic Locomotion Control of Quadruped Robot with Perception-Less Terrain Adaptation. Cyborg Bionic Syst. 2022, 2022, 9816495. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, W.; Togo, S.; Yokoi, H.; Jiang, Y. Survey on Main Drive Methods Used in Humanoid Robotic Upper Limbs. Cyborg Bionic Syst. 2021, 2021, 9817487. [Google Scholar] [CrossRef] [PubMed]
- Adăscăliţei, F.; Doroftei, I. Practical applications for mobile robots based on mecanum wheels-a systematic survey. Rom. Rev. Precis. Mech. Opt. Mechatron. 2011, 40, 21–29. [Google Scholar]
- Qian, J.; Zi, B.; Wang, D.; Ma, Y.; Zhang, D. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System. Sensors 2017, 17, 2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almasri, E.; Uyguroğlu, M.K. Modeling and Trajectory Planning Optimization for the Symmetrical Multiwheeled Omnidirectional Mobile Robot. Symmetry 2021, 13, 1033. [Google Scholar] [CrossRef]
- Mariappan, M.; Sing, J.C.; Wee, C.C.; Khoo, B.; Wong, W. Simultaneous rotation and translation movement for four omnidirectional wheels holonomic mobile robot. In Proceedings of the 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), Kuala Lumpur, Malaysia, 15–16 December 2014; pp. 69–73. [Google Scholar]
- Tian, Y.; Zhang, S.; Liu, J.; Chen, F.; Li, L.; Xia, B. Research on a new omnidirectional mobile platform with heavy loading and flexible motion. Adv. Mech. Eng. 2017, 9, 1687814017726683. [Google Scholar] [CrossRef]
- Bulgakov, V.; Pascuzzi, S.; Nadykto, V.; Ivanovs, S. A Mathematical Model of the Plane-Parallel Movement of an Asymmetric Machine-and-Tractor Aggregate. Agriculture 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Dai, S.; Zhao, L.; Yan, X.; Shi, Y. Topological Design Methods for Mecanum Wheel Configurations of an Omnidirectional Mobile Robot. Symmetry 2019, 11, 1268. [Google Scholar] [CrossRef] [Green Version]
- Sofwan, A.; Mulyana, H.R.; Afrisal, H.; Goni, A. Development of Omni-Wheeled Mobile Robot Based-on Inverse Kinematics and Odometry. In Proceedings of the 2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), Semarang, Indonesia, 26–27 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Suh, J.; Han, J.H. Development of a Hybrid Path Planning Algorithm and a Bio-Inspired Control for an Omni-Wheel Mobile Robot. Sensors 2020, 20, 4258. [Google Scholar] [CrossRef] [PubMed]
- Rijalusalam, D.U.; Iswanto, I. Implementation Kinematics Modeling and Odometry of Four Omni Wheel Mobile Robot on The Trajectory Planning and Motion Control Based Microcontroller. J. Robot. Control (JRC) 2021, 2, 448–455. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy. Appl. Sci. 2018, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Pang, F.; Luo, M.; Xu, X.; Tan, Z. Path Tracking Control of an Omni-Directional Service Robot Based on Model Predictive Control of Adaptive Neural-Fuzzy Inference System. Appl. Sci. 2021, 11, 838. [Google Scholar] [CrossRef]
- Amudhan, A.N.; Sakthivel, P.; Sudheer, A.P.; Kumar, T.K.S. Design of controllers for omnidirectional robot based on the ystem identification technique for trajectory tracking. J. Phys. Conf. Ser. 2019, 1240, 012146. [Google Scholar] [CrossRef]
- Hijikata, M.; Miyagusuku, R.; Ozaki, K. Wheel Arrangement of Four Omni Wheel Mobile Robot for Compactness. Appl. Sci. 2022, 12, 5798. [Google Scholar] [CrossRef]
- Alshorman, A.M.; Alshorman, O.; Irfan, M.; Glowacz, A.; Muhammad, F.; Caesarendra, W. Fuzzy-Based Fault-Tolerant Control for Omnidirectional Mobile Robot. Machines 2020, 8, 55. [Google Scholar] [CrossRef]
- Şahin, O.N.; Çelik, O.; Dede, M.İ.C. Fault-Tolerance Experiments with a Kinematically Redundant Holonomic Mobile Robot. In Proceedings of the Mechanisms, Transmissions and Applications; Dede, M.I.C., İtik, M., Lovasz, E.C., Kiper, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Mechanisms and Machine Science; pp. 161–170. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, M.; Mohan, S. Behavioural Fault tolerant control of an Omni directional Mobile Robot with Four mecanum Wheels. Def. Sci. J. 2019, 69, 353. [Google Scholar] [CrossRef] [Green Version]
Material / Condition | Detail |
---|---|
Omni Wheel | (4 inches) 100 mm Double Aluminum Omni Wheel Bearing Rollers |
Wheel Material | Rubber |
Flooring | Lonseal’s Lonleam Plain |
Standard Applied to Flooring | JIS A 5705 |
Flooring Material | vinyl resin |
Flooring Size | 2 mm (thickness) × 1.82 m × 3 m |
Flooring laying method | direct placement (no adhesion) |
Camera | Logitech’s C930e |
Camera Mounting Height | 2.17 m |
Room Temperature |
Configuration | Wheel Number | x [m] | y [m] | [deg] | [deg] |
---|---|---|---|---|---|
E-to-O | 1 | −0.191 | −0.191 | −120 | - |
2 | 0.071 | −0.191 | −60 | ||
3 | 0.191 | 0.131 | 30 | ||
4 | −0.281 | 0.221 | 120 | ||
Not E-to-O 1 | 1 | −0.191 | −0.049 | −120 | 1.67 |
2 | 0.071 | −0.191 | −60 | ||
3 | 0.292 | 0.180 | 0 | ||
4 | −0.109 | 0.251 | 60 | ||
Not E-to-O 2 | 1 | −0.191 | −0.191 | −120 | −59.3 |
2 | 0.071 | −0.191 | −60 | ||
3 | −0.191 | 0.109 | −120 | ||
4 | 0.191 | 0.131 | 30 | ||
Not E-to-O 3 | 1 | −0.191 | −0.191 | −120 | −79.0 |
2 | 0.071 | −0.191 | −60 | ||
3 | −0.191 | 0.109 | −120 | ||
4 | 0.191 | 0.049 | −30 |
Configuration | Wheel Number | x [m] | y [m] | [deg] | [deg] |
---|---|---|---|---|---|
E-to-O | 1 | −0.208 | −0.058 | −135 | - |
2 | 0.101 | −0.221 | −30 | ||
3 | 0.221 | −0.079 | 30 | ||
4 | 0.071 | 0.191 | 60 | ||
5 | −0.071 | 0.311 | 120 | ||
6 | −0.182 | −0.256 | −112.7 | ||
Not E-to-O | 1 | −0.150 | 0.082 | 90 | 28.6 |
2 | 0.101 | −0.281 | −30 | ||
3 | 0.281 | 0.221 | 30 | ||
4 | −0.251 | 0.311 | 120 | ||
5 | 0.019 | 0.199 | −150 | ||
6 | 0.221 | −0.281 | −30 |
Configuration | Direction [deg] | |||||||
---|---|---|---|---|---|---|---|---|
0 | 45 | 90 | 135 | 180 | ||||
E-to-O | −0.0029 | 0.0008 | 0.0040 | 0.0049 | 0.0029 | −0.0008 | −0.0040 | −0.0049 |
Not E-to-O 1 | −0.0130 | 0.3071 | 0.4474 | 0.3255 | 0.0130 | −0.3071 | −0.4474 | −0.3255 |
Not E-to-O 2 | 0.2855 | 0.3217 | 0.1694 | −0.0821 | −0.2855 | −0.3217 | −0.1694 | 0.0821 |
Not E-to-O 3 | 0.4714 | 0.3980 | 0.0915 | −0.2686 | −0.4714 | −0.3980 | −0.0915 | 0.2686 |
Configuration | Direction [deg] | |||||||
---|---|---|---|---|---|---|---|---|
0 | 45 | 90 | 135 | 180 | ||||
E-to-O | 0.0002 | 0.0001 | −0.0001 | −0.0002 | −0.0002 | −0.0001 | 0.0001 | 0.0002 |
Not E-to-O | −0.3789 | 0.2230 | 0.6943 | 0.7589 | 0.3789 | −0.2230 | −0.6943 | −0.7589 |
Arrangement | l [m] | [m] | ||
---|---|---|---|---|
Average | RMS | Average | RMS | |
4-wheeled Not E-to-O 1 | 0.254 | 0.261 | 0.177 | 0.197 |
4-wheeled Not E-to-O 2 | 0.231 | 0.233 | 0.173 | 0.201 |
4-wheeled Not E-to-O 3 | 0.223 | 0.225 | 0.151 | 0.179 |
6-wheeled Not E-to-O | 0.297 | 0.309 | 0.212 | 0.278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijikata, M.; Miyagusuku, R.; Ozaki, K. Omni Wheel Arrangement Evaluation Method Using Velocity Moments. Appl. Sci. 2023, 13, 1584. https://doi.org/10.3390/app13031584
Hijikata M, Miyagusuku R, Ozaki K. Omni Wheel Arrangement Evaluation Method Using Velocity Moments. Applied Sciences. 2023; 13(3):1584. https://doi.org/10.3390/app13031584
Chicago/Turabian StyleHijikata, Masaaki, Renato Miyagusuku, and Koichi Ozaki. 2023. "Omni Wheel Arrangement Evaluation Method Using Velocity Moments" Applied Sciences 13, no. 3: 1584. https://doi.org/10.3390/app13031584
APA StyleHijikata, M., Miyagusuku, R., & Ozaki, K. (2023). Omni Wheel Arrangement Evaluation Method Using Velocity Moments. Applied Sciences, 13(3), 1584. https://doi.org/10.3390/app13031584