Split-Spectrum Processing with Raised Cosine Filters of Constant Frequency-to-Bandwidth Ratio for L(0,2) Ultrasonic Guided Wave Testing in a Pipeline
<p>Schematic diagram of split spectrum processing (SSP).</p> "> Figure 2
<p>(<b>a</b>) Comparison of GS and RC filters with the same bandwidth, frequency impulses of (<b>b</b>) GS, (<b>c</b>) RC, (<b>d</b>) FBR-GS and (<b>e</b>) FBR-RC filters, time impulses of (<b>f</b>) RC and (<b>g</b>) FBR-RC filters.</p> "> Figure 3
<p>Dispersion curves of the zero-order axisymmetric UGWs: (<b>a</b>) phase velocity, (<b>b</b>) group velocity and dispersion curves of the asymmetric UGWs: (<b>c</b>) phase velocity, (<b>d</b>) group velocity.</p> "> Figure 4
<p>Normalized (<b>a</b>) axial, (<b>b</b>) circumferential and (<b>c</b>) radial displacement distributions of the L(0,1), F(<span class="html-italic">n</span>,1), L(0,2) and F(<span class="html-italic">n</span>,3) UGWs (1 ≤ <span class="html-italic">n</span> ≤ 4) at 110 kHz.</p> "> Figure 5
<p>Time-frequency diagrams of L(0,1), F(<span class="html-italic">n</span>,1), L(0,2) and F(<span class="html-italic">n</span>,3) UGW synthesized signals (1 ≤ <span class="html-italic">n</span> ≤ 4) propagating 0.8 m.</p> "> Figure 6
<p>(<b>a</b>) Time-frequency diagrams of the UGW synthesized signal at the propagation distance of 0.8 m and (<b>b</b>) time domain diagram of the UGW synthesized signal at different propagation distances.</p> "> Figure 7
<p>(<b>a</b>) Time and (<b>b</b>) frequency domain diagrams of the synthesized UGW signal.</p> "> Figure 8
<p>Synthesized UGW signals before and after applying SSPs based on GS, RC, FBR-GS and FBR-RC filters.</p> "> Figure 9
<p>Effects of filter parameters: (<b>a</b>) <span class="html-italic">B<sub>f</sub></span>, (<b>b</b>) <span class="html-italic">B<sub>t</sub></span>, (<b>c</b>) Δ<span class="html-italic">f</span> and (<b>d</b>) <span class="html-italic">B<sub>r</sub></span> on SNRG and DCRG of the synthesized UGW signals processed by FBR-RC-SSP.</p> "> Figure 10
<p>Optimized synthesized UGW signals processed by FBR-RC-SSP.</p> "> Figure 11
<p>Schematic diagram of the pipeline and defects.</p> "> Figure 12
<p>Time-frequency diagrams of simulated UGW signals (axial, circumferential and radial) with defect 1 (α = 300°).</p> "> Figure 13
<p>Time-frequency diagrams of simulated UGW signals (axial, circumferential and radial) with multi-defect (α = 300°).</p> "> Figure 14
<p>Simulated UGW signals before and after applying FBR-RC-SSP (1 ≤ defect number ≤ 3, 60° ≤ α ≤ 300°).</p> "> Figure 15
<p>Schematic diagram of magnetostrictive UGW testing.</p> "> Figure 16
<p>Experimental UGW signals with multi-defect (1≤ defect number ≤3, 60°≤ α ≤300°).</p> "> Figure 17
<p>Experimental UGW signals before and after applying GS-SSP and FBR-RC-SSP (1 ≤ defect number ≤ 3, 60° ≤ α ≤ 300°).</p> ">
Abstract
:1. Introduction
2. Split Spectrum Processing
2.1. Filter Bank Design
2.2. Signal Recombination Methods
3. Synthesized UGW Signal Analysis
3.1. UGW Characteristic Analysis
3.2. UGW Signal Time-Frequency Analysis
4. Filter Parameters Analysis
5. Simulations of UGW Testing
6. Experiments of UGW Testing
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olisa, S.C.; Khan, M.A.; Starr, A. Review of current guided wave ultrasonic testing (GWUT) limitations and future directions. Sensors 2021, 21, 811. [Google Scholar] [CrossRef]
- Adegboye, M.A.; Fung, W.K.; Karnik, A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches. Sensors 2019, 19, 2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.M.; Yang, B. Theory and Method of Magnetostrictive Guided Wave Nondestructive Testing; Science Press: Beijing, China, 2015. [Google Scholar]
- Narayanan, M.M.; Arjun, V.; Kumar, A.; Mukhopadhyay, C.K. Development of in-bore magnetostrictive transducer for ultrasonic guided wave based-inspection of steam generator tubes of PFBR. Ultrasonics 2020, 106, 106148. [Google Scholar] [CrossRef]
- Xiao, Q.Y.; Li, J.; Sun, J.D.; Feng, H.; Jin, S.J. Natural-gas pipeline leak location using variational mode decomposition analysis and cross-time-frequency spectrum. Measurement 2018, 124, 163–172. [Google Scholar] [CrossRef]
- Fang, Z.; Tse, P.W. Axial magnetized patch for efficient transduction of longitudinal guided wave and defect identification in concrete-covered pipe risers. Struct. Control Health Monit. 2018, 25, e2231. [Google Scholar] [CrossRef]
- Pedram, S.K.; Fateri, S.; Gan, L.; Haig, A.; Thornicroft, K. Split-spectrum processing technique for SNR enhancement of ultrasonic guided wave. Ultrasonics 2018, 83, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Malo, S.; Fateri, S.; Livadas, M.; Mares, C.; Gan, T.H. Wave mode discrimination of coded ultrasonic guided waves using two-dimensional compressed pulse analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, S.L.; Wang, S.; Zhuang, S.Y.; Wang, Q.; Zhao, W. Compressed sensing method for health monitoring of pipelines based on guided wave inspection. IEEE Trans. Instrum. Meas. 2019, 69, 4722–4731. [Google Scholar] [CrossRef]
- Mahal, H.N.; Mudge, P.; Nandi, A.K. Comparison of coded excitations in the presence of variable transducer transfer functions in ultrasonic guided wave testing of pipelines. In Proceedings of the 9th European Workshop on Structural Health Monitoring, Manchester, UK, 10–13 July 2018; pp. 10–13. [Google Scholar]
- Fan, Z.; Niu, X.D.; Miao, B.C.; Meng, H.Y. Hybrid coded excitation of the torsional guided wave mode T(0,1) for oil and gas pipeline inspection. Appl. Sci. 2022, 12, 777. [Google Scholar] [CrossRef]
- Mahal, H.N.; Mudge, P.; Nandi, A.K. Noise removal using adaptive filtering for ultrasonic guided wave testing of pipelines. In Proceedings of the 57th Annual British Conference on Non-Destructive Testing, Nottingham, UK, 10–12 September 2018. [Google Scholar]
- Zhao, M.L.; Wang, H.S.; Xue, B.; Yue, Y.G.; Zhang, P.F.; Lv, F.Z.; Tang, Z.F. Research on ultrasonic guided wave dispersion compensation for steel strand defect detection. IOP Conf. Ser. Mater. Sci. Eng. 2020, 740, 012101. [Google Scholar] [CrossRef]
- Downs, A.; Roberts, R.; Song, J.M. Array-based guided wave source location using dispersion compensation. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2021, 4, 041002. [Google Scholar] [CrossRef]
- Luo, Z.; Zeng, L.; Lin, J. A novel time-frequency transform for broadband Lamb waves dispersion characteristics analysis. Struct. Health Monit. 2021, 20, 3056–3074. [Google Scholar] [CrossRef]
- Xu, C.B.; Yang, Z.B.; Chen, X.F.; Tian, S.H.; Xie, Y. A guided wave dispersion compensation method based on compressed sensing. Mech. Syst. Signal Process. 2018, 103, 89–104. [Google Scholar] [CrossRef]
- Pedram, S.K.; Haig, A.; Lowe, P.S.; Thornicroft, K.; Gan, L.; Mudge, P. Split-spectrum signal processing for reduction of the effect of dispersive wave modes in long-range ultrasonic testing. Phys. Procedia 2015, 70, 388–392. [Google Scholar] [CrossRef] [Green Version]
- Rubbers, P.; Pritchard, C.J. An overview of split spectrum processing. J. Nondestruct. Test. 2003, 8, 1–5. [Google Scholar]
- Praveen, A.; Vijayarekha, K.; Abraham, S.T.; Venkatraman, B. Signal quality enhancement using higher order wavelets for ultrasonic TOFD signals from austenitic stainless steel welds. Ultrasonics 2013, 53, 1288–1292. [Google Scholar] [CrossRef]
- Pedram, S.K.; Mudge, P.; Gan, T.H. Enhancement of ultrasonic guided wave signals using a split-spectrum processing method. Appl. Sci. 2018, 8, 1815. [Google Scholar] [CrossRef] [Green Version]
- Grevillot, M.; Cudel, C.; Meyer, J.J.; Jacquey, S. Two approaches to multiple specular echo detection using split spectrum processing: Moving bandwidth minimization and mathematical morphology. Ultrasonics 1999, 37, 417–422. [Google Scholar] [CrossRef]
- Karpur, P.; Canelones, O.J. Split spectrum processing: A new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals. Ultrasonics 1992, 30, 351–357. [Google Scholar] [CrossRef]
- Alagha, N.S.; Kabal, P. Generalized raised-cosine filters. IEEE Trans. Commun. 1999, 47, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.; Miralles, R.; Bosch, I.; Vergara, L. New analysis and extensions of split-spectrum processing algorithms. NDT E Int. 2012, 45, 141–147. [Google Scholar] [CrossRef]
- Seco, F.; Martín, J.M.; Jiménez, A.; Pons, J.L.; Calderón, L.; Ceres, R. PCDISP: A tool for the simulation of wave propagation in cylindrical waveguides. In Proceedings of the 9th International Congress on Sound and Vibration, Orlando, FL, USA, 8–11 July 2002. [Google Scholar]
- Wang, Z.; Huang, S.L.; Wang, S.; Wang, Q.; Zhao, W. A damage localization method with multimodal Lamb wave based on adaptive polynomial chirplet transform. IEEE Trans. Instrum. Meas. 2020, 69, 8076–8087. [Google Scholar] [CrossRef]
- Arjun, V.; Narayanan, M.M.; Thirunavukkarasu, S.; Kumar, A. Optimization of geometrical parameters of a magnetostrictive ultrasonic guided wave probe for tube inspection. IEEE Sens. J. 2021, 21, 10735–10742. [Google Scholar] [CrossRef]
- Majhi, S.; Mukherjee, A.; George, N.V.; Karaganov, V.; Uy, B. Corrosion monitoring in steel bars using laser ultrasonic guided waves and advanced signal processing. Mech. Syst. Signal Process. 2021, 149, 107176. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, B.H.; Chen, A.; Xu, J.J.; Qiu, Z.C.; Zhao, Y.W.; Wang, Y.F.; Deng, L. Performance optimization of axial magnetized magnetostrictive patch transducer for transduction of L(0,2) ultrasonic guided wave for pipe inspection. Measurement 2022, 196, 111170. [Google Scholar] [CrossRef]
- Fang, Z.; Tse, P.W. Demagnetization-based axial magnetized magnetostrictive patch transducers for locating defect in small-diameter pipes using the non-axisymmetric guided wave. Struct. Health Monit. 2019, 18, 1738–1760. [Google Scholar] [CrossRef]
- Liu, Z.H.; Hu, Y.N.; Fan, J.W.; Yin, W.L.; Liu, X.C.; He, C.F.; Wu, B. Longitudinal mode magnetostrictive patch transducer array employing a multi-splitting meander coil for pipe inspection. NDT E Int. 2016, 79, 30–37. [Google Scholar] [CrossRef]
Operation | Transformation | ||
---|---|---|---|
Time shift Tt0 | |||
Frequency shift Fω0 | |||
Scaling Ss | |||
Frequency shear Qq | |||
Time shear Pp |
FBR-RC-SSP-PT | FBR-RC-SSP-PTM | FBR-RC-SSP-SPT | ||||
---|---|---|---|---|---|---|
SNRG (dB) | DCRG (dB) | SNRG (dB) | DCRG (dB) | SNRG (dB) | DCRG (dB) | |
1–60° | 15.07 | 14.15 | 15.08 | 14.14 | 7.50 | 7.37 |
1–120° | 12.73 | 11.95 | 14.73 | 14.15 | 6.22 | 5.24 |
1–180° | 12.70 | 12.05 | 14.84 | 13.85 | 6.67 | 6.48 |
1–240° | 12.66 | 13.85 | 13.07 | 12.84 | 4.82 | 3.88 |
1–300° | 13.33 | 13.57 | 14.84 | 14.09 | 5.57 | 5.19 |
2–300° | 13.78 | 13.96 | 13.07 | 12.18 | 6.03 | 5.16 |
3–300° | 12.12 | 12.96 | 13.94 | 12.13 | 6.04 | 5.13 |
Mean | 13.19 | 13.21 | 14.22 | 13.34 | 6.12 | 5.49 |
GS-SSP-PT | GS-SSP-PTM | FBR-RC-SSP-PT | FBR-RC-SSP-PTM | |||||
---|---|---|---|---|---|---|---|---|
SNRG(dB) | DCRG(dB) | SNRG(dB) | DCRG(dB) | SNRG(dB) | DCRG(dB) | SNRG(dB) | DCRG(dB) | |
1–60° | 16.27 | - | 18.15 | - | 18.79 | - | 20.82 | - |
1–120° | 15.25 | 15.04 | 15.92 | 15.66 | 17.23 | 17.81 | 18.83 | 18.27 |
1–180° | 14.31 | 15.21 | 17.71 | 17.56 | 19.45 | 19.11 | 20.20 | 20.05 |
1–240° | 15.16 | 15.06 | 16.55 | 16.43 | 17.21 | 17.95 | 18.86 | 18.46 |
1–300° | 13.87 | 13.31 | 14.19 | 13.54 | 16.59 | 16.14 | 18.39 | 18.40 |
2–300° | 14.59 | 15.20 | 15.78 | 15.01 | 19.25 | 18.65 | 18.89 | 18.51 |
3–300° | 14.12 | 14.06 | 16.65 | 16.58 | 20.81 | 20.28 | 22.97 | 22.16 |
Mean | 14.79 | 14.64 | 16.42 | 15.79 | 18.48 | 18.32 | 19.85 | 19.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, B.; Wang, Y.; Chen, A.; Zhao, Y.; Xu, J. Split-Spectrum Processing with Raised Cosine Filters of Constant Frequency-to-Bandwidth Ratio for L(0,2) Ultrasonic Guided Wave Testing in a Pipeline. Appl. Sci. 2022, 12, 7611. https://doi.org/10.3390/app12157611
Tang B, Wang Y, Chen A, Zhao Y, Xu J. Split-Spectrum Processing with Raised Cosine Filters of Constant Frequency-to-Bandwidth Ratio for L(0,2) Ultrasonic Guided Wave Testing in a Pipeline. Applied Sciences. 2022; 12(15):7611. https://doi.org/10.3390/app12157611
Chicago/Turabian StyleTang, Binghui, Yuemin Wang, Ang Chen, Yunwei Zhao, and Jianjian Xu. 2022. "Split-Spectrum Processing with Raised Cosine Filters of Constant Frequency-to-Bandwidth Ratio for L(0,2) Ultrasonic Guided Wave Testing in a Pipeline" Applied Sciences 12, no. 15: 7611. https://doi.org/10.3390/app12157611
APA StyleTang, B., Wang, Y., Chen, A., Zhao, Y., & Xu, J. (2022). Split-Spectrum Processing with Raised Cosine Filters of Constant Frequency-to-Bandwidth Ratio for L(0,2) Ultrasonic Guided Wave Testing in a Pipeline. Applied Sciences, 12(15), 7611. https://doi.org/10.3390/app12157611